KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

EDUCATION SCIENCE

COURSE CODE:	CHEM 421
---------------------	-----------------

- COURSE TITLE: COMPARATIVE STUDY OF *d* AND *f* BLOCKS ELEMENTS
- STREAM: SESSION VII, VIII & IX
- DAY: MONDAY
- TIME: 9.00 11.00 A.M.
- DATE: 30/11/2009

INSTRUCTIONS:

Answer ALL questions

PLEASE TURN OVER

- 1. (a) Differentiate between a transition and an inner transition element? [1mark] (b) Give the electron configurations of the following atoms (i) Cr(ii) Nb(iii) Eu (iv) Gd (vi) Yb [Atomic numbers: Cr = 24, Nb =41, Eu = 63, Gd = 64, and Yb = 70] [5 marks] [2 marks] (c) Briefly comment on your answer in (ii) and (iv) of (b) above (d) What are the possible oxidation states of Eu? Defend your answer. [3 marks] (e) Account for the following observations; (i) Transition metals show variable oxidation states [2 marks] (ii) Chromium is the hardest element among the first row transition [2 marks] elements (f) Study the table below showing the atomic radii and reduction potentials of
 - group IIIB elements and answer the questions that follow;

Element	Sc	Yb	La
Atomic radii (pm)	162	180	187
Reduction potentials (volts)			
$M^{3+} + 3e^- \leftrightarrow M$	-2.1	-2.37	-2.52

Briefly comment on the trend in variation of;

- (i) Atomic radii
- (ii) Reduction potentials
- 2. (a) Contrast the complexation chemistry of the d and f block elements
 - [3 marks]

[4 marks]

- (b) Give *two* similarities and *two* differences between the lanthanides and actinides[2 marks]
- (c) Write short notes on the following subjects as used in inorganic chemistry;
 - (i) Crystal field stabilization energy

	(ii) Selection rules of electronic transitions			
	(iii) Valence bond theory	[6 marks]		
	(d) Explain briefly what is meant by "Lanthanide contraction" and comment on			
	its consequence.	[3 marks]		
•	(a) Describe three methods of preparing metal carbonyls. Give an example in			
	each case.	[4.5 marks]		
	(b) State three physical properties of metal carbonyls	[3 marks]		
	(c) Explain using chemical equations three chemical properties of metal carbonyls			
		[4.5 marks]		

(d) Account for the following observations;

3.

- (i) Ni²⁺ compounds are thermodynamically more stable than Pt²⁺ compounds while Pt⁴⁺ compounds are relatively more stable than Ni⁴⁺ compounds
- (ii) Ce^{3+} shows exceptionally strong absorptions in the UV visible region.
- (iii) Transition metals readily form alloys with each other
- (iv) High valency transition metal ions readily form complexes with π-donor ligands.[8 marks]
- 4. (a) Using molecular orbital theory show that CO is a π -acid ligand. [3 marks]
 - (b) Describe the bonding in bridging CO using valence bond theory. [3 marks]
 - (c) (i) V(CO)₆ is octahedral and paramagnetic. Describe the bonding in this complex using valence bond theory
 [Atomic number V=23]
 [4 marks]
 - (ii) Calculate the effective atomic number of V in the complex and comment briefly on your answer [1 mark]

- (d) Explain briefly how a bridging carbonyl ligand can be distinguished from a terminal one [2 marks]
- (e) Infrared and x-ray studies of Mn₂(CO)₁₀, show that the compound does not have a bridging carbonyl and the metal ions are in an octahedral environment. Describe the bonding using valence bond theory.

[Atomic number; Mn =25]

[4 marks]