KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:	CHEM 421	

- **COURSE TITLE:** COMPARATIVE STUDY OF D AND F BLOCK ELEMENTS
- STREAM: SESSION VI & VIII
- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 07/04/2009

INSTRUCTIONS: *Answer ALL questions*

PLEASE TURN OVER

1. (a) What is a lanthanide?

(b) Give the electron configurations of the following elements;

(i) La (ii) Eu (iii) Yb (iv) Am

[Atomic numbers; La = 57, Eu = 63, Yb = 70, and Am = 95]

[4 marks]

(c) Predict the possible oxidation states of Eu giving reasons for your answer.

[2 marks]

- (d) Account for the following observations;
 - (i) Atoms of the transition elements are smaller than those of the group 1 or 2 elements in the same horizontal period.
 - (ii) Elements in group IIB have lower melting points than other transition elements. [4 marks]
- (e) The table below shows the variation of atomic radii and ionization energies of the first row transition elements.

Element	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Atomic radius	162	147	134	127	126	126	125	124	128	138
(pm)										
First ionization	631	658	650	653	717	759	758	736	746	906
Energy (kJ/mol)										

Briefly comment on the trend in the variation of;

- (i)Atomic radii
- (ii) First ionization energies [6 marks]
- 2. (a) What is Lanthanide contraction? [2 marks]
 (b) State and explain two consequences of lanthanide contraction [2 marks]
 (c) Compare and contrast the chemistry of the d and f block elements
 [Hint: Give four similarities and differences of the elements in the two blocks]
 [8 marks]
 (d) Distinguish between π acid and π donor ligands. [2 marks]

3.	(a) Contrast ((a) Contrast the complexation chemistry of the lanthanides and the actinides;							
	[Hint	[Hint: Give three differences] [3 marks]							
	(b) Write sho	ort notes on the following terms;							
	(i) spin	(i) spin pairing promotion energy (ii) Organometallic compounds							
	(iii) In	(iii) Interstitial compounds (iv) Back bonding (v) fluxional compound							
			[5 marks]						
	(c) Account	for the following observations;							
	(i)	Position of the absorption bands in lanthanides	s is independent of						
		the ligands							
	(ii)	+3 oxidation state is common among the lanth	inides						
	(iii)	Ce ³⁺ show exceptionally strong absoptions in	the Uv region						
	(iv)	Transition metals readily form alloys							
	(v)	Formation of metal-carbon double bonds is far	voured in metal						
		carbonyls							
			[10 marks]						
4.	(a) Using val	ence bond theory, describe the structure of CO a	ıs a;						
	(i) te	erminal ligand (ii) bridging ligand	[5 marks]						
	(b) Discuss three methods that can be used to prepare metal carbonyls and gi								
	example	in each case	[3 marks]						
	(c) List two physical properties of metal carbonyls [2 m								
	(d) [Ni(CO) ₄	(d) [Ni(CO) ₄] is tetrahedral and diamagnetic:							
	(i)	Describe the bonding in this complex using va	lence bond theory.						
		[Atomic number Ni =28]	[4 marks]						
	(ii)	Calculate the effective atomic number of Ni in	the complex and						
		comment briefly on your answer.	[2 marks]						
	(e) Infra red absorption and X-ray studies have shown that the structure of								
	$Fe_2(CO)_9$ consists of three bridging carbonyl groups, six terminal carbonyl								
	groups and one single bond (δ) between the two atoms in a octahedral								
	environment. Describe the bonding in this compound using valence bond								
	theory an	d draw its structure.							
	[Ator	nic number: Fe =26]	[5marks]						