KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: CHEM 421

COURSE TITLE: COMPARATIVE STUDY OF d AND f BLOCKS ELEMENTS

- STREAM: SESSION VII & VIII
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 14/08/2009

INSTRUCTIONS TO CANDIDATES:

Answer ALL questions

PLEASE TURN OVER

- 1. (a) What is an actinide?
 - (b) Write the electron configuration of the following atoms or ions:

(i) Ce (ii) Eu (iii) Gd (vi) Yb

[Atomic numbers: Ce = 58, Eu = 63, Gd = 64, and Yb = 70]

	[
(c) Briefly comment on your answer in (iii) and (iv) above	[2 marks]
(d) (i) What are the possible oxidation states of Eu?	[1 mark]
(ii) Defend your answer in d (i) above?	[2 marks]
(e) Account for the following observations;	
(i) d and f block elements form interstitial compounds	[2 marks]
(ii) Hg is a metallic but a liquid at room temperature	[2marks]

(f) The table below shows the variation of atomic radii and ionization energies of the first row transition elements. Study it and answer the questions that follow;

Element	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic radii	162	147	134	127	126	126	125	124	128	138
(pm)										
First ionization	631	658	650	653	717	759	758	736	746	906
energy (KJ/mol										

Briefly comment on the trend in variation of;

- (i) Atomic radii
- (ii) Ionization energy [4 marks]
- 2. (a) Give *two* similarities and *two* differences between the d and the f block elements [4 marks]
 - (b) Contrast the lanthanides and actinides

[Hint: State and explain four differences between the elements in the two series]

[4 marks]

[1mark]

[5 marks]

- (c) Briefly discuss three methods used in separation of the *f*-block elements [3 marks]
- (d) State two uses of compounds of the f block elements [4 marks]
- (e) Briefly explain what is meant by "lanthanide contraction [2 marks]

- 3. (a) Explain the following terms;
 - (i) Back bonding
 - (ii) Effective atomic number rule
 - (iii) Spin pairing promotion energy
 - (iv) π acid ligand
 - (v) Organometallic compound
 - (b) Account for the following observations;
 - (i) Position of the absorption bands in electronic spectrum of lanthanides and actinides is independent of the ligands

[5.5 marks]

- (ii) Yb⁴⁺ shows exceptionally strong absorptions in the UV region
- (iii) Transition metals readily form alloys with each other
- (iv) High valent transition metal ions readily form complexes with π -donor ligands
- (iv) Carbonyl ligand binds to the metal ion via carbon and not oxygen
- (v) Lanthanides and actinides are metals [10 marks]
- 4. (a) Using valence bond theory, describe the structure of CO as a;
 - (i) Terminal ligand (ii) bridging ligand [5 marks]
 - (b) Briefly explain how the bonding mode of CO can be confirmed using infra red spectroscopy [1 mark]
 - (c) Illustrating with an example each, give three methods of preparing a metal carbonyl [4.5 marks]
 - (d) (i) V(CO)₆ is tetrahedral and paramagnetic with one unpaired electron. Describe the bonding in this complex using valence bond theory
 [Atomic number V=23]
 [4 marks]
 - (ii) Calculate the effective atomic number of vanadium in the complex [1 mark]
 - (e) Infrared and x-ray studies of Mn₂(CO)₉, show that the compound does not have a bridging carbonyl and the metal ions are in an octahedral environment. Describe the bonding in compound using valence bond theory.
 [Atomic number; Mn =25]