KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 221

COURSE TITLE: COMPARATIVE STUDY OF S AND P BLOCK ELEMENTS

STREAM: SESSION IV & V

DAY: THURSDAY

TIME: 2.00 – 4.00 P.M.

DATE: 27/11/2008

INSTRUCTIONS:

Answer all the questions

PLEASE TURN OVER

Q1. a) (i). Give the general trend with explanation of the first ionization energies of the
elements: H, Li and Na{2mks}ii) What is electronegativity and how does it vary across period 2?{2mks}iii) Lithium ion in solution should conduct electricity better than other ions of group one,
but this is not the case. Comment on this statement.{1mk}iv) State four factors that influence the ionization energy values of elements. {4mks}

b) (i) Comment on the solubility of fluorides and carbonates down the group compared to solubility of other S- block salts. {1mk}
ii) Describe using equations how the diagonal relationship is observed in the oxides of Be and Al in the formation of their salts with acid and water. {4mks}
iii) Explain the meaning of the term "Ionization potential (energy)". {1mk}
iv) Define eletropositivity and state how it varies across the periodic table and down the group. {2mks}

Q2 (a). Comment on the following statements:

i) Aqueous Na₂CO₃ is alkaline while aqueous NH₄Cl is acidic $\{3mks\}$ ii) Generally across the period ionization energies increase, but the 1st ionization energy of Nitrogen is higher than that of oxygen. $\{3mks\}$ iii) The first ionization energy of Lithium is lower than that of Boron but higher than that of Sodium. $\{3mks\}$ iv) NaH decomposes at 380^{0} C while LiH is stable upto 900° C $\{2mks\}$

b). i) Define an organometallic compound and show whether sodium acetate is an organo-metallic compound or not. {2mks}
ii) Give equations for the preparation of the following compounds:-CH₃ – Mg – Br and Al(CH₃)₃ {4mks}
iii) Account for the large decrease in electron affinity between Li and Be despite increase in nuclear charge {3mks}

- i) Boron halides are trivalent compounds and they act as Lewis acids. Explain {3 mks}
 ii) Boron hydride fuels must be kept free from water. Explain this phenomenon using an equation {1 mk}
- Q3. a) Explain how Aluminium (Al) can be obtained form Al₂O₃ Ore (Bauxite).
 Illustrate your answer with suitable chemical equations including the reactions at electrodes.
 {6mks}
 - b) Explain briefly the following observations:

i)The atomic radius of Aluminium is 1.43 while that of Gallium is 1.41 {3mks}

ii) Most Beryllium and Lithium salts are soluble in organic solvents.

 $\{3mks\}$

iii) The usual co-ordination number of Be $^{2+}$ is four whereas Mg $^{2+}$ is six {2mks}

c) Group IV elements form hydrides, which vary in size and ease of formation. Compare the hydrides of Carbon and silicon and explain the term catenation

 $\{4mks\}$

d) Write down the balanced equation for the reaction involving the preparation of orthophosphoric acid H_3PO_4 from calcium phosphate. {1mk} a) (i) Explain why the H- O – H bond angle in water is 105^0 while in H₂Se and H₂Te the bond angle become close to 90^0 {2mks}

ii) How does the acid strength vary among the halogen acids of the form HX down the group? {2mks}

iii) Write down the hydrolysis products of the following inter-halogen compounds. BrF₅, IF₇, ICI {3mks}

4

b) Briefly explain the following observations

i.) Nitrogen is able to form compounds that have no counterparts in the other elements of group V for example NO₃⁻ NO₂, N₂O, NO etc. {2mks} ii) The boiling point of Cl₂ and HF are -35° C and 19° C respectively. {2mks}