UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: MATH 313
COURSE TITLE: COMPLEX ANALYSIS
STREAM: SESSION V
DAY: TUESDAY
TIME:
2.00-4.00 P.M.

DATE:
06/04/2010

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions.

QUESTION ONE: (30 MARKS)

(a) Show the point $Z=2-3 i$ on an argard diagram and write it in polar form. [3 marks]
(b) Using the first principle technique find the derivatives of the following complex functions;
i) $f(z)=\operatorname{Cos} z$
ii) $f(z)=e^{-2 z}$
(c) Show that $f(z)=e^{z}$ is analytic everywhere on complex plane.
(d) If $f(z)=u+i v$ is analytic and $u=x^{3}-3 x y^{2}$. Find V
(e) Verify Cauchy's theorem for the function $f(z)=z^{3}+2$ for circle $|z|=2$
(f) Evaluate $\oint_{c} \frac{z^{6}+1}{z^{3}\left(2 z^{2}-5 z+2\right)} d z$ Where C is the circle $|z|=1$

QUESTION TWO: (20 MARKS)

(a) Evaluate $\int_{(0,4)}^{(2,5)}(3 x+y) d x+(2 y-x) d y$ along
(i) The line $y=x^{2}+1$
(ii) The straight line joining $(0,1)$ and $(2,5)$
(iii) The straight lines from $(0,1)$ to $(0,5)$ and then from $(0,1)$ to $(2,5)$
(b) Show that if $u+i v$ is analytic then $v-i u$ is also analytic.
(c) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)^{2}}$

QUESTION THREE: (20 MARKS)

(a) Derive the $\mathrm{C}-\mathrm{R}$ Equations
(b) Prove that $\varphi=\ln \left\{(x-1)^{2}+(y-2)^{2}\right\}$ is harmonic in every region which does not include the point $(1,2)$.

QUESTION FOUR: (20 MARKS)

(a) Show that $f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z$
[10 marks]
(b) Show that $f^{1}(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z$
[10 marks]

QUESTION FIVE: (20 MARKS)

(a) Evaluate $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+4\right)}$
[10 marks]
(b) Evaluate $\oint_{0}^{\infty} \frac{d x}{x^{2}+4}$

