KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS

AND MATHEMATICS

COURSE CODE: MATH 313

- COURSE TITLE: COMPLEX ANALYSIS
- STREAM: SESSION III
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 30/11/2009

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions

PLEASE TURN OVER

QUESTION ONE

(a) Find the value of a and b if

$$\frac{a-bi}{1+2i} = 1 - 2i \tag{3 marks}$$

- (b) Show that $|z| = |\overline{z}|$ for all z (2 marks) (c) Given that z = 2 + 3iDetermine; (i) |z| (ii) Arg z (2 marks)
- (d) Use De Moire Theorem to write $\sin 3\theta$ and $\cos 3\theta$ in terms of $\sin \theta$ and $\cos \theta$ (5 marks)
- (e) Determine if and where the function z^2 is analytic (7 marks)
- (f) Prove that $e^y \sin x$ is harmonic and find V such that f(z) = u + iv is analytic.
- (g) Evaluate the integral $\oint \frac{z^2 + 1}{(z-1)^2} dz$ around the circle whose equation is |z| = 2. (6 marks)

QUESTION TWO

- (a) Determine the Taylor series expand of $\frac{1}{1+z}$ about the origin and state its radius of convergences. (6 marks)
- (b) Use Residue theorem to Evaluate;

$$\oint_C \frac{dz}{z^2 + 1}$$
 (4 marks)

(c) Derive the Canchy – Riemann conditions for analytic functions. (10 marks)

QUESTION THREE

- (a) State Canchy's integral formula. (2 marks)
- (b) Show that if f(z) is analytic inside and on a simple closed curve c and a is any point inside C then $f(a) = \frac{1}{2\pi i} \oint_{c} \frac{f(Z)}{(Z-a)^{2}} dz$ (10 marks)

(c) Find the value of the integral $\oint \frac{z^2}{z^2 - 1} dz$ around the unit circle with centre at (i) z = 1 (ii) z = -1 (8 marks)

QUESTION FOUR

(a) Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 in the region
(i) $|z| < 1$ (4 marks)

(ii)
$$|z| > 2$$
 (4 marks)

- (b) State Green's Theorem
- (c) Verify Green's Theorem in the plane for $\oint_C [(2xy x^2)dx + (x + y^2)dy]$ where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$. (10 marks)

(7 marks)

QUESTION FIVE

- (a) Use the first principle technique to find the derivative of the following complex functions
 - (i) $f(z) = \sin z$ (4 marks)(ii) $f(z) = e^z$ (4 marks)
- (b) Briefly explain the meaning of the following terms:

(c) Express
$$\tan 4\theta$$
 in terms of $\tan \theta$ only using powers of complex numbers. (4 marks)

(d) If
$$f(z) = \frac{3z+1}{(z-4)(z-1)}$$
, determine the poles and residues for $f(z)$. (4 marks)