UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS
AND MATHEMATICS
COURSE CODE: MATH 313
COURSE TITLE: COMPLEX ANALYSIS
STREAM: SESSION III
DAY:
MONDAY
TIME:
2.00-4.00 P.M.

DATE:
30/11/2009

INSTRUCTIONS:

Attempt question $\underline{\mathbf{O N E}}$ and any other TWO questions

QUESTION ONE

(a) Find the value of a and b if

$$
\begin{equation*}
\frac{a-b i}{1+2 i}=1-2 i \tag{3marks}
\end{equation*}
$$

(b) Show that $|z|=|\bar{z}|$ for all z
(2 marks)
(c) Given that $z=2+3 i$

Determine;
(i) $|z|$
(ii) $\operatorname{Arg} Z$
(2 marks)
(d) Use De Moire Theorem to write $\sin 3 \theta$ and $\cos 3 \theta$ in terms of $\sin \theta$ and $\cos \theta$
(e) Determine if and where the function z^{2} is analytic
(f) Prove that $e^{y} \sin x$ is harmonic and find V such that $f(z)=u+i v$ is analytic.
(g) Evaluate the integral $\oint \frac{z^{2}+1}{(z-1)^{2}} d z$ around the circle whose equation is $|z|=2$.
(6 marks)

QUESTION TWO

(a) Determine the Taylor series expand of $\frac{1}{1+z}$ about the origin and state its radius of convergences.
(6 marks)
(b) Use Residue theorem to Evaluate;

$$
\begin{equation*}
\oint_{c} \frac{d z}{z^{2}+1} \tag{4marks}
\end{equation*}
$$

(c) Derive the Canchy - Riemann conditions for analytic functions.
(10 marks)

QUESTION THREE

(a) State Canchy's integral formula.
(2 marks)
(b) Show that if $f(z)$ is analytic inside and on a simple closed curve c and a is any point inside C then $f(a)=\frac{1}{2 \pi i} \oint_{c} \frac{f(Z)}{(Z-a)^{2}} d z$
(c) Find the value of the integral $\oint \frac{z^{2}}{z^{2}-1} d z$ around the unit circle with centre at
(i) $z=1$
(ii) $z=-1$
(8 marks)

QUESTION FOUR

(a) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region
(i) $\quad|z|<1$
(4 marks)
(ii)
$|z|>2$
(4 marks)
(b) State Green's Theorem
(c) Verify Green's Theorem in the plane for $\oint_{C}\left[\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y\right]$ where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x .(\mathbf{1 0}$ marks)

QUESTION FIVE

(a) Use the first principle technique to find the derivative of the following complex functions
(i) $f(z)=\sin z$
(ii) $f(z)=e^{z}$
(b) Briefly explain the meaning of the following terms:
(i) Singularity
(2 marks)
(ii) Removable singularity (2 marks)
(c) Express $\tan 4 \theta$ in terms of $\tan \theta$ only using powers of complex numbers. (4 marks)
(d) If $f(z)=\frac{3 z+1}{(z-4)(z-1)}$, determine the poles and residues for $f(z)$.
(4 marks)

