KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

- COURSE CODE: MATH 313
- COURSE TITLE: COMPLEX ANALYSIS
- STREAM: SESSION V
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 08/04/2009

INSTRUCTIONS:

Answer question **ONE** and any other **TWO** questions

PLEASE TURN OVER

<u>QUESTION ONE</u> (30 Marks)

<u>QUESTION UNE</u> (30 Marks)				
a) Briefly explain the following terms Pole.	(2 marks)			
b) Show that (+) = + .	(4 marks)			
c) By the first principle show that () = -2 has a derivative at every	which is			
3 – 2 .	(5 marks)			
d) Evaluate the integral \int — where is the circle = 4 traversed	once in the			
counterclockwise direction.	(4 marks)			
e) Find the real part, imaginary part, modulus and argument of the complex number				
$(4+2) - 3 + \sqrt{2}$	(5 marks)			
f) Find the polar form of $2 + 2\sqrt{3}$.	(3 marks)			
g) Solve the hyperbolic equation $h - 5 - h - 5 = 0$.	(5 Marks)			
<u>OUESTION TWO</u> (20 Marks)				
a) Derive Cauchy-Riemann conditions.	(10 marks)			
b) Define a harmonic function.	(2 marks)			
	· · · ·			
	(3 marks)			
equation.	· · · ·			
(ii) Determine the corresponding regular function + .	(5 marks)			

<u>QUESTION THREE</u> (20 Marks)

 a) State Cauchy - Gour b) Verify Cauchy - Gou 2. 	rsat theorem. ursat theorem for the functi	on ()=	(2 marks) + 2 for the circle = (6 marks)
c) Show that \int —	—— = – .		(7 Marks)
d) Expand () =	in a Taylor series about	=	(5 marks)

<u>OUESTION FOUR</u> (20 Marks).

a) State and prove Cauchy Integral formula. (10 marks)
b) When is the circle | | = 2 described counter-clockwise, use Cauchy's integral formula to prove that ∫ — = 0 (4 Marks)
c) Determine the residue of the function () at all the poles. (6 marks)

QUESTION FIVE (20 Marks).

a) (i) State Laurent's theorem. (3 marks)
(ii) Expand in Laurent series the function () = () () for 1 < | | < 5.
(8 marks)
b) Distinguish between conformal mapping and isogonal mapping. (4 Marks)
c) If = () = + is analytic in a region , prove that ((,)) = | () . (5 marks)