KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:	MATH 313
COURSE TITLE:	COMPLEX ANALYSIS I
STREAM:	SESSION IV, V & VI
DAY:	WEDNESDAY
TIME:	9.00 – 1.00 P.M.
DATE:	26/11/2008

INSTRUCTIONS TO CANDIDATES:

1. Answer Question **ONE** and any other **TWO** Questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

(a) Express
$$f(z) = 2z^2 + 3z - 2$$
 in the form
 $f(z) = u + iv$ (3 mks)

(b) Prove that
$$|z, z_2| = |z| |z_2|$$
 (4 mks)

(c) Expand $f(z) = \operatorname{Sin} z$ in Taylor series about $z = \frac{\pi}{4}$ (5 mks)

(d) Find the Laurent series expansion for
$$f(z) = \frac{1}{z(z-1)}$$
 for $0 < |z| < 1$ (6 mks)

(e) Evaluate
$$\int_{(1,1)}^{(2,4)} (x^2 + ixy) dz$$
 along the curve $x = t$, $y = t^2$ (5 mks)

(f) Consider the function
$$f(z) = \frac{z^3 + 4}{(z^2 + 9)^2}$$

(i) Find the residue of f(z) at its poles (5 mks)

(ii) Evaluate
$$\int_{c} f(z) dz$$
 (2 mks)

QUESTION TWO (20 MARKS)

- (a) State and prove the Caunchy Riemann equation in the complex plane. (10 mks)
- (b) Given $f(z) = 3z^2 + 6z + 4$. Verify Riemann equation for f(z) (10 mks)

QUESTION THREE (20 MKS)

- (a) If f(z) = u(x, y) + iv(x, y) is an analytic function in some region of the z plane. Show that f(z) is a harmonic function. (10 mks)
- (b) Show that $u(x, y) = x^3 y y^3 x$ is harmonic and find V(x, y) so that f(z) = u + iv is harmonic. (10 mks)

QUESTION FOUR (20 MKS)

(a) If f(z) is analytic within and on a simple closed curve C and if A is any point within C, show that

$$f(a) = \frac{1}{2\pi i} \oint_c \frac{f(z)}{z-a} dz$$
 (10 mks)

(b) When c is the circle described counter clockwise, use Cauchy's integral formula to prove that

(i)
$$\int_{c} \frac{z}{z^{2} + 9} dz = 0$$
 (5 mks)

(ii)
$$\int_{c} \frac{z^2 + 4}{z - 1} dz = 10\pi$$
 (5 mks)

QUESTION FIVE (20 MARKS)

(a) Define singular point and isolated singular point. (4 mks)

(b) Prove that the series $z(1-z) + z^2(1-z) + z^3(1-z) + \cdots$ converges for |z| < 1(7 mks)

(c) Show that the series in question 5(b) above is absolutely convergent for |z| < 1

(8 mks)