KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: MATH 313

COURSE TITLE: COMPLEX ANALYSIS

- STREAM: Y3 S1
- DAY: SATURDAY
- TIME: 9.00 11.00 A.M
- DATE: 27/11/2010

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions

PLEASE TURN OVER

QUESTION ONE

(a) Find the value of a and b if	
$\frac{a-bi}{1+2i} = 1 - 2i$	(3 marks)
(b) Show that $ z = \overline{z} $ for all z	(3 marks)
(c) Given that $z = 2 + 3i$	
Determine;	
(i) $ z $ (ii) <u>Arg</u> z	(4 marks)
(d) Using first principle derive cosz	(8mks
(e) Determine if the function z^2 is analytic	(7 marks)

(f) Prove that $e^y \sin x$ is analytic

QUESTION TWO

(a) Evaluate;

$$\oint_C \frac{z^6 + 1}{z^3(2z^2 - 5z + 2)} \, dz \tag{10 marks}$$

(c) Derive the Cauchy – Riemann conditions for analytic functions. (10 marks)

QUESTION THREE

- (a) State Canchy's integral formula. (2 marks)
- (b) Show that if f(z) is analytic inside and on a simple closed curve c and a is any point inside C then $f(a) = \frac{1}{2\pi i} \oint_c \frac{f(Z)}{(Z-a)^2} dZ$ (10 marks)
- (c) Find the value of the integral $\oint \frac{z^2}{z^2 1} dz$ around the unit circle with centre at (i) z = 1 (ii) z = -1 (8 marks)

QUESTION FOUR

(a) Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 in the region
(i) $|z| < 1$ (5 marks)
(ii) $|z| > 2$ (5 marks)

b(i)(Evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2 (x^2+4)}$$
 (10 marks)

(ii)
$$\int_0^{2\pi} \frac{d\varphi}{(2+\cos\theta)^2}$$

QUESTION FIVE

- (a) Use the first principle technique to find the derivative of the following complex functions
 - (i) $f(z) = \sin z$ (4 marks)(ii) $f(z) = e^z$ (4 marks)
- (b) Briefly explain the meaning of the following terms:

(i) Singularity	(2 marks)
(ii) Removable singularity	(2 marks)

(c) Express $\tan 4\theta$ in terms of $\tan \theta$ only using powers of complex numbers. (4 marks)

(d) If
$$f(z) = \frac{3z+1}{(z-4)(z-1)}$$
, determine the poles and residues for $f(z)$. (4 marks)