

COURSE CODE: MATH 313

COURSE TITLE: COMPLEX ANALYSIS
STREAM: Y3S1
DAY:
TUESDAY
TIME:
2.00-4.00 P.M.

DATE:
15/03/2011

INSTRUCTIONS:

Attempt question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION ONE

(a) Find the value of a and b if

$$
-=1-2
$$

(3 marks)
(b) Show that $\left|\mathrm{I}=\left.\right|^{-}\right|$for all
(3 marks)
(c) Given that $=2+3$

Determine;
(i) 1 |
(ii) Arg
(4 marks)
(d) Using first principle derive cosz
(8mks
(e) Determine if the function is analytic
(7 marks)
(f) Prove that \sin is analytic

QUESTION TWO

(a) Evaluate;

$$
\begin{equation*}
\oint \overline{(} \tag{10marks}
\end{equation*}
$$

(c) Derive the Cauchy - Riemann conditions for analytic functions and laplace equations.
(10 marks)

QUESTION THREE

(a) State Canchy's integral formula.
(2 marks)
(b) Show that if () is analytic inside and on a simple closed curve c and a is any point inside C then $(\quad)=\frac{1}{2 \pi} \oint \frac{()}{(Z-)^{2}}$
(c) Find the value of the integral $\oint-$
(i) $=1$
(ii) $=-1$
around the unit circle with centre at

QUESTION FOUR

(a) Expand $\quad()=\frac{}{(\quad)(\quad)}$ in the region
(i) $\quad|\mid<1$
(5 marks)
(ii) $|\mid>2$
(5 marks)
b(i)(Evaluate $\int_{\infty}^{\infty} \overline{(\quad)(\quad)}$
(10 marks)
(ii) $\int \overline{ }$

QUESTION FIVE

(a) Use the first principle technique to find the derivative of the following complex functions
(i) $\quad()=\sin$
(4 marks)
(ii)
() =
(4 marks)
(b) Briefly explain the meaning of the following terms:
(i) Singularity
(2 marks)
(ii) Removable singularity (2 marks)
(c) Express $\tan 4 \theta$ in terms of $\tan \theta$ only using powers of complex numbers. (4 marks)
(d) If $\quad(\quad)=\frac{}{(\quad)(\quad \text {, determine the poles and residues for (). }}$
(4 marks)

