KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

ECONOMICS

COURSE CODE: MATH 313

COURSE TITLE: COMPLEX ANALYSIS

- STREAM: Y3S1
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 15/03/2011

INSTRUCTIONS:

Attempt question <u>ONE</u> and any other <u>TWO</u> questions

PLEASE TURN OVER

QUESTION ONE

(a) Find the value of a and b if

QUESTION TWO

(a) Evaluate; $\oint \frac{10 \text{ marks}}{10 \text{ marks}}$

(c) Derive the Cauchy – Riemann conditions for analytic functions and laplace equations. (10 marks)

QUESTION THREE

- (a) State Canchy's integral formula. (2 marks)
- (b) Show that if () is analytic inside and on a simple closed curve c and a is any point inside C then () = $\frac{1}{2\pi} \oint \frac{()}{(Z-)^2}$ (10 marks)
- (c) Find the value of the integral \oint around the unit circle with centre at (i) = 1 (ii) = -1 (8 marks)

QUESTION FOUR (a) Expand () = (-)(-) in the region (i) || < 1 (5 marks) (ii) || > 2 (5 marks) b(i)(Evaluate $\int_{-\infty}^{\infty} (-) (-)$ (10 marks) (ii) $\int (-)$

QUESTION FIVE

(a) Use the first principle technique to find the derivative of the following complex functions

(i)	() = sin	(4 marks)
(ii)	()=	(4 marks)

(b)	Briefly explain the meaning of the following terms:	
	(i) Singularity	(2 marks)
	(ii) Removable singularity	(2 marks)
(c)	Express $\tan 4\theta$ in terms of $\tan \theta$ only using powers of complex numbers.	(4 marks)

(d) If
$$() = \frac{1}{(-)(-)}$$
, determine the poles and residues for (). (4 marks)