

COURSE CODE: MATH 313

COURSE TITLE: COMPLEX ANALYSIS
STREAM: SESSION VI \& VII
DAY:
WEDNESDAY
TIME:
9.00-11.00 A.M.

DATE:
13/04/2011

INSTRUCTIONS:
Attempt question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION ONE

(a) Show the point $=3 \quad{ }^{\circ}$ on argard diagram. (4 marks)
(b) Define continuity of a complex functions at a point (3 marks)
(c) From first principles differentiate the complex functions at a specified point.
i. $\quad()=$ at $=0$
ii. $\mathrm{f}(\mathrm{z})=\sin =720^{\circ}$
(d) If ()$=+$ is analytic function and $=-3 \quad$ Find V.
(e) Evaluate $\oint \Gamma \quad$ where c is the circle $|\mid=1 \quad$ (6 marks)
(f) If ()$=+1$ show that $\oint()=0 h \quad h \quad|-2|=5 .(4$ marks $)$

QUESTION TWO (20 MARKS)

(a) Derive the $\mathrm{C}-\mathrm{R}$ equations and hence verify whether ()$={ }^{-}$is analytic or not.
(15 marks)
(b) Given $(\quad)=y-\quad$ Show that u is harmonic and find the harmonic conjugate V .

QUESTION THREE (20 MARKS)

(a) Evaluate $\int^{\infty} \overline{(\quad)(\quad)}$
(b) Evaluate $\left.\int \overline{(}\right)$

QUESTION FOUR (20 MARKS)

(a) Evaluate $\int_{(,)}^{(,)}(3+) \quad+(2-)$ dy along
(i) The curve $\mathrm{y}=+1$ (4 marks)
(ii) The straight line joining $(0,1)$ and $(2,5)$ (4 marks)
(iii) The straight line joining $(0,1)$ to $(0,5)$ and then from $(0,1)$ to $(2,5)$
(b) Expand - in a Taylor's series about $\mathrm{z}=0$ and determine the region of convergence.
(c) $f(z)=3 z+1 /(z-4)(z-1)$ find the poles and residues at the poles for $f(z)$

QUESTION FIVE (20MARKS)

If () is analytic inside and on the boundary C of a simple connected region then show that $\quad()=-\int \frac{()}{} \quad$ and $\quad()=-!\int \frac{()}{(\quad)} \quad$ where $n=1,2,3$ taking a specific example of $=$ and hence generalize. (20 marks)

