KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: C	OMP 312
----------------	---------

COURSE TITLE: COMPUTER NETWORKS

STREAM: Y3S1

DAY: WEDNESDAY

- TIME: 8.30 10.30 A.M.
- DATE: 17/12/2008

INSTRUCTIONS:

- 1. This question paper has FIVE questions
- 2. Answer question ONE and any other TWO questions

PLEASE TURN OVER

QUESTION ONE (30 MARKS) COMPULSORY

	(a)	Explain the meaning of following terms	
	. ,	i. Internet	
		ii. Checksum	
		iii. Network adapter	
		iv. Cipher	(8mks)
	(b)	Distinguish between	
	(0)	i Infrared and radio transmission waves	
		ii Encryption and decryption	(4mks)
			(minus)
	(c)	write the name of UDP protocol in full outline its function and state the	OSI
	(0)	reference model layer it operates	(3mks)
		reference moder layer it operates	(JIIKS)
	(d)	Convert the following	
	(u)	i Decimal number 172 to octet binary number	(2mks)
		i. 01010001 binary number to a desired number	(2mks)
		II. 01010001 billary number to a decimal number	(2111KS)
	(a)	One of the advantages of a computer network is that it is more afficient	Idontify
	(6)	and avalage three ways in which a computer network is efficient.	(6mkg)
		and explain three ways in which a computer network is efficient	(OIIKS)
	(f)	State Nyquist theorem	(Imks)
	(1)	State Typulst theorem	(2mms)
	(g)	Use Nyquist theorem to determine the maximum canacity a channel can	arry if it
	(g)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth	carry if it
	(g)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth	carry if it (3mks)
	(g)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth	carry if it (3mks)
ΟΙ	(g)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth	carry if it (3mks)
QL	(g) J ES	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE	carry if it (3mks)
QL	(g) J ES (a)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs	carry if it (3mks) (2mks)
QU	(g) J ES (a)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing	carry if it (3mks) (2mks)
QL	(g) J ES (a) (b)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing	carry if it (3mks) (2mks) (4mks)
QL	(g) (ES' (a) (b)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers	carry if it (3mks) (2mks) (4mks) (5mks)
QU	(g) (a) (b) (c)	Use Nyquist theorem to determine the maximum capacity a channel can allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers	carry if it (3mks) (2mks) (4mks) (5mks)
QL	(g) JES ^(a) (b) (c) (d)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers	carry if it (3mks) (2mks) (4mks) (5mks)
QU	(g) JES (a) (b) (c) (d)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers Describe three categories of routers	carry if it (3mks) (2mks) (4mks) (5mks) (9mks)
QU	(g) J ES (a) (b) (c) (d)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers Describe three categories of routers	carry if it (3mks) (2mks) (4mks) (5mks) (9mks)
QU	(g) JES' (a) (b) (c) (d)	Use Nyquist theorem to determine the maximum capacity a channel can allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers Describe three categories of routers	carry if it (3mks) (2mks) (4mks) (5mks) (9mks)
QU	(g) JES'(a) (b) (c) (d) JES'(a)	Use Nyquist theorem to determine the maximum capacity a channel can a allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers Describe three categories of routers TION THREE (20 MARKS) ELECTIVE What is the difference between data and signal?	carry if it (3mks) (2mks) (4mks) (5mks) (9mks)
QU	(g) JES (a) (b) (c) (d) JES (a)	Use Nyquist theorem to determine the maximum capacity a channel can allows a low-pass signal of 80mHz bandwidth TION TWO (20 MARKS) ELECTIVE Distinguish between intelligent and passive hubs Differentiate between static routing and dynamic routing Explain five functions of routers Describe three categories of routers TION THREE (20 MARKS) ELECTIVE What is the difference between data and signal?	carry if it (3mks) (2mks) (4mks) (5mks) (9mks) (3mks)

(b) Describe the difference between Manchester and Differential Manchester encoding schemes wave formats (6mks)

(c) Determine the input value for the following Manchester encoding scheme $V(y)$	(5mks)
	(011115)
	t(s)
(d) Describe how CSMA/CD media access method works	(6mks)
QUESTION FOUR (20 MARKS) ELECTIVE	
(a) i. What is token ring technology?	(2mks)
ii. Why do think token ring technology employs Manchester encoding sc	heme?
iii. Describe a token frame structure	(2mks) (10mks)
(b). i. State Shannon's theorem	(2mks)

ii. Determine the maximum channel capacity of a 7kHz channel that has a thermal noise of 70dB (4mks)

QUESTION FIVE (20 MARKS) ELECTIVE

(a)	Diffe	erentiate between data link layer and network layer of the OSI reference	e
	mod	el	(3mks)
(b)	Brie	fly, discuss the following four classes of IP address: class A, B, C and	D
			(8mks)
(c)	One	of the functions of a protocol is to cope up with signal error.	
	i.	Describe two ways that a protocol cops up with errors	(4mks)
	ii.	Determine the checksum for the extended ASCII message "Dad"	(5mks)