

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 321

COURSE TITLE: COORDINATION CHEMISTRY

STREAM: SESSION VII

DAY: SATURDAY

TIME: 2.00 - 4.00 P.M.

DATE: 14/08/2010

INSTRUCTIONS:

- 1. Attempt ALL questions
- 2. A periodic table will e provided to you.

PLEASE TURNOVER

QUESTION ONE (17.5marks)

a) Define the following terms:

i.	Coordination complex	(2marks)
ii.	Ligand	(2marks)
iii.	. Chelate	(2marks)

- b) Differentiate between;
 - i. A monodentate and a polydentate ligand (2marks)ii. A transition element and a d-block element. (2marks)
- c) Explain the following observations.
 - i. The ionic radius of Fe^{3+} is 0.64A while that of Fe^{2+} is 0.76A (2.5marks)
 - ii. Transition metals have very high boiling and melting points. (1mark)
 - iii. d-block elements have a marked ability to form complex compounds.

(2marks)

iv. d-block elements have a marked ability to form interstitial compounds.

(2marks)

QUESTION TWO (17.5marks)

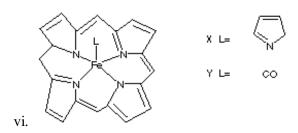
a) Identify the donor atoms from the following ligands and classify each ligand as monodentate, bidentate or polydentate: Ethylenediamine (NH₂CH₂CH₂NH₂),

Oxalate ion(O⁻COCOO⁻) and EDTA((CH₂COOH)₂NCH₂CH₂N(CH₂COOH)₂).

(6marks)

b) When a concentrated solution of NH_3 is added to a solution containing $Zn(NO_3)_2$, a colorless solution containing the complex ion $Zn(NH_3)_4^{2+}$ results. Explain why this solution is colorless? (2marks)

- c) Show the hybridization in the formation of Ni(CO)₄ molecule. (Ni=28) (4marks)
- d) Illustrate with a relevant example, the existence of Jahn-Teller distortions in some coordination compounds. (5.5marks)


QUESTION THREE (17.5marks)

- a) Give the structure for each of the following coordination compounds.
 - i. Chlorotris(phenanthroline)cobalt(II)
 - ii. Diamminedichloroplatinate(II)
 - iii. Potasiumtetrachlorocobaltate(II)
 - iv. Hexaaminenickelate(II) (4marks)

- b) Assign IUPAC names to the following coordination compounds:
 - i. $[Cu(NH_3)_4]^{2+}$
 - ii. $K_3[Fe(C_2O_4)_3].H_2O$
 - iii. $[Co(en_2(H_2O)Cl)]^{2+}$
 - iv. $[Ni(NH_3)_6]^{2+}$

v. (CN) ligand (5marks)

- c) Indicate the number of unpaired electrons in each of the following compounds;
 - i. $[Pd(NH_3)_4]^{2+}$ (2marks)
 - ii. $\left[\text{Co(CN)}_{5}\right]^{3}$ (2marks)
- d) Below are structural formulas for two iron porphyrins. The pyridine complex, X, is paramagnetic whereas the carbonyl derivative is diamagnetic. The pyridine complex strongly binds a second pyridine forming a diamagnetic bis-pyridine complex; however, the carbonyl complex, Y, only weakly binds a second carbonyl.

- i. Offer two reasons for this difference. (2.5marks)
- ii. How many unpaired electrons are in the mono pyridine complex?

(2marks)

QUESTION FOUR (17.5marks)

a) State four factors that affect the field splitting according to crystal field theory.

(4marks)

- b) Illustrate the octahedral field splitting of the d- orbitals according to the crystal field (CF) theory. (6marks)
- c) Consider two complexes A and B. One is $Ni(NH_3)_2Br_2$; while the other is $Pd(OH_2)_2Br_2$ respectively. A is paramagnetic and B is diamagnetic.
 - i. What is the oxidation state of each of the metals? (2marks)
 - ii. How many d electrons does each metal have? (2marks)
 - iii. What is the coordination number of each complex? (2marks)
 - iv. What is the geometry of complex A? (1.5marks)