

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 321

COURSE TITLE: CO-ORDINATION CHEMISTRY

STREAM: SESSION VI

DAY:
FRIDAY
TIME:
2.00-4.00 P.M.

DATE:
28/11/2008

INSTRUCTIONS:

Answer ALL questions in sections

PLEASE TURN OVER

1. (a) Write the electron configuration of the following atoms;
(i) Sc (ii) Co (iii) Cu (iv) Zn
[Atomic numbers; $\mathrm{Sc}=21, \mathrm{Co}=27, \mathrm{Cu}=29$ and $\mathrm{Zn}=30$] [4 marks]
(b) Briefly explain why Zn is not considered as transition elements. [1 mark]
(c) Draw diagram of the five d-orbitals indicating clearly the distribution of their electron densities with respect to x, y and $\mathrm{z}-$ axes.
[2.5 marks]
2. (a) Explain the main postulates of Werner's theory of co-ordination compounds.[4 marks]
(b) Study the table below showing properties of Cobalt ammonate chlorides and answer the questions that follow;

Compound	Number of Particles determined by cryscopic measurements	Molar conductance Λ_{m} Ohm $^{-1} \mathrm{~cm}^{2}$
$\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$	4	390
$\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$	3	262
$\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$	2	102
$\mathrm{CoCl}_{3} .3 \mathrm{NH}_{3}$	1	0

(i) Account for the above experimental observation using Werner's theory of co-ordination compounds
[4 marks]
(ii) Calculate the E.A.N of cobalt in the compound above [Atomic number of $\mathrm{Co}=27$]
3. (a) Write short notes on the following terms as applied in co-ordination chemistry;
(i) Hard acids (ii) Spectrochemical series (iii) Back-bonding [6 marks]
(b) Give the I.U.P.A.C names of the following compounds:
(i) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right.$ (ii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtBr}_{4}\right]$ (iii) $\mathrm{K}\left[\mathrm{PtNH}_{3} \mathrm{Cl}_{5}\right]$
(iv) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right) \mathrm{SO}_{4}$ (v) $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{NO}_{3} \quad$ [5 marks]
(c) Draw the structures of the following ligands and indicate clearly the donor atoms;
(i) Trien (ii)EDTA (iii) peroxo (iv) thiocynato
[4 marks]
(d) Distinguish between;
(i) chelating and bridging ligands (ii) ambidentate and polydentate ligands.
4. a) Using examples, discuss the following types of isomerism in co-ordination compounds;
(i) co-ordination position isomerism (ii) geometric isomerism (iii) ligand Isomerism [6 marks]
(b) State and explain three factors that determine the magnitude of crystal field splitting in co-ordination compounds.
[6 marks]
5. (a) The complex $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is paramagnetic with one unpaired electron. Account for the bonding in this complex using the following bonds theories.
[Atomic number of $\mathrm{Fe}=26$]
(i) Valence bond theory
(ii) Crystal field theory
(iii) Molecular orbital theory
(b) State two advantages and two disadvantages of the molecular orbital theory over crystal field theory .
(c) Account for the following observations;
(i) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is coloured but $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is not.
(ii) $\left[\mathrm{MnF}_{6}\right]^{4-}$ has a perfect octahedral geometry while $\left[\mathrm{CoF}_{6}\right]^{4-}$ is tetragonal
(iii) Transition elements form complexes
[Atomic number; $\mathrm{Sc}=21, \mathrm{Ti}=22, \mathrm{Co}=27$ and $\mathrm{Mn}=25$]
[9 marks]

