KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

EDUCATION SCIENCE

COURSE CODE: CHEM 321

COURSE TITLE: COORDINATION CHEMISTRY

- STREAM: SESSION VII
- DAY: SATURDAY
- TIME: 2.00 4.00 P.M.
- DATE: 28/11/2009

INSTRUCTIONS:

Attempt all questions

PLEASE TURN OVER

QUESTION ONE (17.5MARKS)

- a) Define the following terms:
 - i. Ligand
 - ii. Complex ion
 - iii. Coordination sphere
- b) Assign IUPAC names to the following coordination compounds:
 - i. $[Cu(NH_3)_4]SO_4$
 - ii. $K_2[CoCl_4]$
 - iii. $[Co(Phen)_2Cl_2]$
 - $[Co(en)_2(H_2O)Cl]Cl_2$ iv.
 - $K_3[Fe(C_2O_4)_3].3H_2O$ (10 marks) v.
- c) Give the proper formulae of the following coordination compounds.
 - i. Diamminedichloroplatinate(II)
 - ii. Dicyanobis(ethylenediamine)chromium(III)chloride.
 - iii. Potassiumamminetetrachloroplatinate(II).
 - iv. Trioxalatoferrate(III).
 - Hexaaminonickelate(II). (10 marks) v.
- d) When a metal such as Fe^{2+} is dissolved in water, the resulting Fe^{2+}_{aq} ion is a coordination complex between iron(II) and water. Identify this complex.

(3.5 marks)

QUESTION TWO (17.5MARKS)

a) Identify the donor atoms from the following ligands. and classify each ligand as either monodentate, bidentate or polydentate: Ethylenediamine(NH₂CH₂CH₂NH₂), Oxalate ion(O⁻COCOO⁻) and EDTA((CH₂COOH)₂NCH₂CH₂N(CH₂COOH)₂).

(5.5 marks)

b) Name any two biologically important compounds which can be classified as coordination complexes. (2 marks)

(6 marks)

- c) Considering Pt(78), and using the orbital diagrams, illustrate the kind of hybridization that would result in the formation of the following coordination compounds.
 - i. $[PtCl_4]^{2-}$ (3 marks)
 - ii. $[PtCl_2(NH_3)_2]^{2-}$ (3 marks)
 - iii. $[PtCl_2(NH_3)_4]^{2+}$ (4 marks)

QUESTION THREE (17.5MARKS)

- a) Enumerate any two limitations of valence bond (VB) theory of bonding in the formation of coordination complexes. (2 marks)
 b) State four factors that affect field splitting according to crystal field theory. (4 marks)
 c) Illustrate the octahedral field splitting of the d-orbitals according to the crystal field (CF) theory. (6 marks)
 d) Illustrate the existence of Jahn-Teller distortions in some coordination compounds.
 - Give an example. (5.5 marks)

QUESTION FOUR (17.5MARKS)

a)	Explai	(4 marks)	
b)	Explai	(4 marks)	
c)	c) Account for the following observations;		
	i.	Zn^{2+} ions are colourless.	(2 marks)
	ii. $[CuCl_4]^{2-}$ is paramagnetic but $[NiCN_4]^{2-}$ is diamagnetic although each of		
		compounds the compounds has a square planar geometry.	(4 marks)

d) Explain what is meant by Nephelauxetic effect. (1.5 marks)