

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 321

COURSE TITLE: CO-ORDINATION CHEMISTRY

STREAM: SESSION VI & VII

DAY: TUESDAY

TIME: 2.00 - 4.00 P.M.

DATE: 11/08/2009

INSTRUCTIONS TO CANDIDATES:

Answer **ALL** questions

- 1. (a) Define the following terms as applied in coordination chemistry;
 - (i) Coordination compound (ii) Crystal field stabilization energy
 - (iii) Coordination number (iv) Ligand.

[4 marks]

- (b) Draw the shapes of the *d* orbitals indicating clearly their electron densities distribution with respect to x, y and z axes. [2.5 marks]
- (c) Write the electron configurations of the following atoms or ions;

[Atomic numbers: Sc = 21, Fe = 26, Co = 27 and Cu = 29]

[4 marks]

(d) Briefly explain why Zn is not considered as a transition metal

[Atomic numbers: Zn = 30]

[2 marks]

(e) The table below shows some properties of chromium ammonate chlorides. Study it and answer the questions that follow;

Compound	Conductivity
CrCl ₃ .6H ₂ O	high
CrCl ₃ .5H ₂ O	Medium
CrCl ₃ .4H ₂ O	low

(i) Determine the primary and secondary valence of chromium in the compounds

[2 marks]

(ii) Comment on the trend of conductivity of the compounds

[3 marks]

(iii) What is effective atomic number of chromium in the compounds?

[Atomic number of Chromium =24]

[2 marks]

- 2. (a) Draw the structures of the following ligands;
 - (i) Ammine (ii) EDTA (iii) oxalato

[3 marks]

- (b) Give the I.U.P.A.C names of the following compounds;
 - (i) K₂[Fe(CN)₄] (ii) [Cr(NH₃)₂ Cl₃H₂O] (iii) [Pt(NH₃)₄][PtCl₄]
 - (iv) $[Co(NH_3)_6]Cl_3$

[4 marks]

	(c) Write short notes on the following subjects giving an example in each case:		
	(i) Chelating ligands (ii) Ionization isomerism		
	(iii) Spectrochemical series	[6 marks]	
	(d) Distinguish between;		
	(i) Ambidentate ligand and polydentate ligand		
	(ii) Outer orbital and inner orbital complexes	[4 marks]	
3.	(a) The complex $[Ni(H_2O)_6]^{2+}$ is octahedral and paramagnetic with two unpaired		
	electrons. Account for the bonding in this complex using;		
	(i) Valence bond theory (ii) Crystal field theory (iii) Molecular orbital theory		
	[Atomic number of Ni =28]	[10 marks]	
	(b) Draw the splitting patterns of d orbitals in the following fields;		
	(i) Square planar (ii) tetrahedral	[5 marks]	
	(c) Compare and contrast crystal field and molecular orbital bonding theories		
	[Hint: Give two similarities and two differences of the theories]	[4 marks]	
4.	(a) What is the experimental evidence of Jahn Teller distortion?	[2 marks]	
	(b) Will [Mn(H ₂ O) ₆] ²⁺ undergo Jahn Teller distortion? Briefly explain your		
	answer [Atomic numbers: Mn =25]	[2.5 marks]	
	(c) Account for the following observations;		
	(i) $\Delta_{\rm oct}$ is larger than $\Delta_{\rm tert}$		
	(ii) $[Ti(H_2O)_6]^{3+}$ is coloured but $[Ti(H_2O)_6]^{4+}$ is not		
	(iii) d^8 metal ion in a strong field prefer square planar geometry		
	[Atomic number of $Ti = 22$]		
	(iv) Transition metal ions form complexes	[8 marks]	
	(d) What is meant by nephelauxetic effect?	[2 mark]	