KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 321

- COURSE TITLE: CO-ORDINATION CHEMISTRY
- STREAM: Y3S2
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 27/03/2009

INSTRUCTIONS: Answer **ALL** questions

PLEASE TURN OVER

1. (a) Define the following terms as applied in coordination chemistry;

(i) Coordination compound (ii) Crystal field stabilization energy		
(iii) Coordination number (iv) Soft base	[4 marks]	
(b) Draw the shapes of the d orbitals indicating clearly their electron densities distribution		
with respect to x, y and z axes	[2.5 marks]	
(c) Write the electron configurations of the following atoms or ions;		
(i) Sc (ii) Fe (iii) Co^{3+} (iv) Cu^{2+}		
[Atomic numbers: $Sc = 21$, Fe =26, Co =27 and Cu = 29]	[4 marks]	
(d) Briefly explain why Zn is not considered as a transition metal		
[Atomic numbers: $Zn = 30$]	[1 mark]	

(e) The table below shows properties of cobalt aqua flourides. Study it and answer the questions that follow.

Compound	Number of particles as	Molar conductivity
	determined by cryoscopic	$(ohm^{-1}cm^2)$
	measurements	
CoF ₂ ·4H ₂ O	3	230
CoF ₂ ·3H ₂ O	2	97
CoF ₂ ·2H ₂ O	1	0

(i) Explain the above observation on the basis of Werner's coordination theory

(ii) What is the possible geometry of the compounds above? Briefly explain your answer[2 marks]

2. (a) Draw the structures of the following complex ions;

(i)
$$[Mg[EDTA]^{2-}$$
 (ii) $[VO(acac)_2]$ (iii) $[Zn(OH)_4]^{2-}$ (iv) $[Co(en)_2Cl_2]Cl_2$

[4 marks]

[4 marks]

(b) Give the I.U.P.A.C names of the following compounds;

(i)
$$K_2[Fe(CN)_4]$$
 (ii) $[Cr(NH_3)_2 Cl_3H_2O]$ (iii) $[Pt(NH_3)_4][PtCl_4]$
(iv) $[(en)_2Fe(NH)_2Fe(NH_3)_4]Br_2$ [4 marks]

	(c) Write short notes on the following subjects giving an example in each case:(i) Chelating ligands (ii) ionization isomerism (iii) effective atomic		
	number	[6 marks]	
	(d) Distinguish between;		
	(i) Spectrochemical series and nephelauxetic series		
	(ii) Outer orbital and inner orbital complexes	[4 marks]	
3.	The complex $[Ni(H_2O)_6]^{2+}$ is octahedral and paramagnetic with a μ spi	n only value of	
	2.83 Bohr Magneton. Account for the bonding in this complex using;		
	(a) Valence bond theory (b) Crystal field theory (iii) Molecular orbital theory		
	[Atomic number of Ni =28]	[10 marks]	
	(b) Draw the splitting patterns of d orbitals in the following fields;		
	(i) Square planar (ii) tetragonal (iii) tetrahedral	[7.5 marks]	
	(c) Compare and contrast crystal field and molecular orbital bonding theories		
	[Hint: Give two similarities and two differences of the theories]	
		[4 marks]	
4.	(a) What is the experimental evidence of Jahn Teller distortion ?	[2 marks]	
	(b) Will $[Mn(H_2O)_6]^{2+}$ undergo Jahn Teller distortion? Briefly explain	1 your	
	answer [Atomic numbers: Mn =25]	[3 marks	
	(c) Account for the following observations;		
	(i) Ligand field splitting parametric for octahedral (Δ_{oct}) is larger than that of		
	tetrahedral (Δ_{tert})		
	(ii) $[Ti(H_2O)_6]^{3+}$ is coloured but		
	$[Ti(H_2O)_6]^{4+}$ is not		
	(iii) d ⁹ metal ions in a strong field rarely form square planar complex		
	[Atomic number of $Ti = 22$]	[6 marks]	
	(d) Give two properties of a transition element	[2 marks]	