KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF BUSINESS MANAGEMENT AND INFORMATION TECHNOLOGY

COURSE CODE: BMIT 216

- COURSE TITLE: DATABASE MANAGEMENT SYSTEMS
- STREAM: Y2S1
- DAY: TUESDAY
- TIME: 9.00 12.00 P.M.
- DATE: 24/03/2009

INSTRUCTIONS:

- **1.** This question paper has six questions
- 2. Answer question one and any other three questions

PLEASE TURN OVER

QUESTION ONE (40 MARKS) COMPULSORY

(a) What is meant by the following terms?

- (i) Foreign key
- (ii) Schema
- (iii) Prototyping
- (iv) Composite attribute (8mks)
- (b) Distinguish between
 - (i) conceptual and logical database design stages
 - (ii) data security and data integrity
 - (iii) data administrator and database administrator (6mks)
- (a) Explain five advantages of using relational database over flat file systems (5mks)
- (b) Two business partners Abigail and Joel withdraw different amount of money at different branches of the same bank account concurrently. Illustrate and explain the concepts of lost updates, uncommitted data and inconsistent analysis problem that occur as a result of the concurrency. (6mks)
- (c) Briefly, highlight the key responsibilities of a database administrator (5mks)
- (d) With the aid of a diagram, explain many to many relationships and describe how it can be resolved (5mks)

(e) What is the relational algebra version of the following SQL expression	
Select regno, Surname Othernames	
From student	
Where DOB>'20/3/1988'	(5mks)

QUESTION TWO (20 MARKS) ELECTIVE

(a)	What is the distinction between data mining and data warehousing?	(2mks)
(b)	Differentiate between OLTP(online transaction processing) and data warehousing	
		(5mks)
(c)	Data warehousing comes with a number of benefits. Explain two of these benefits	8
		(4mks)
(d)	Describe any three data mining techniques	(9mks)

QUESTION THREE (20 MARKS) ELECTIVE

Below is a sample data for a student progress database

COURSE		
CourseCode	Description	CF
COMP 312	Networks	3.0
COMP 314	Databases	3.0
BIB 220	Religion	2.0

STUDENT

RegNo	Surname	OtherNames	Gender	DOB	DOA	ProgCode
65001	Kami	Rosemary	F	2/28/1988	5/13/2007	BSc
65003	Maina	Emmanuel Tum	Μ	6/3/1987	5/13/2007	BSc
65004	Ali	Henry	Μ	3/17/1988	5/13/2007	BMIT

COURSESTUDIED

RegNo	CourseCode	Cat	Exam
65001	COMP 314	20	40
65001	COMP 312	15	20
65001	BIB 220	23	25
65003	COMP 314	30	30
65003	COMP 312	18	30

Using the information given above, write SQL statements that

- (a) Creates STUDENT table using appropriate data types and corresponding data type lengths and includes the following constraints; RegNo is the primary key, ProgCode is a foreign key from a PRORAMME table, the gender field is F or M and DOB must be before today
- (b) displays a virtual field **Total** that adds cat and exam marks in the COURSESTUDIED table (2mks)
- (c) lists STUDENTs **RegNo** and **Surname** for BMIT students (2mks)
- (d) lists STUDENTs **RegNo** and **Surname** for BSc students in ascending order

(3mks)

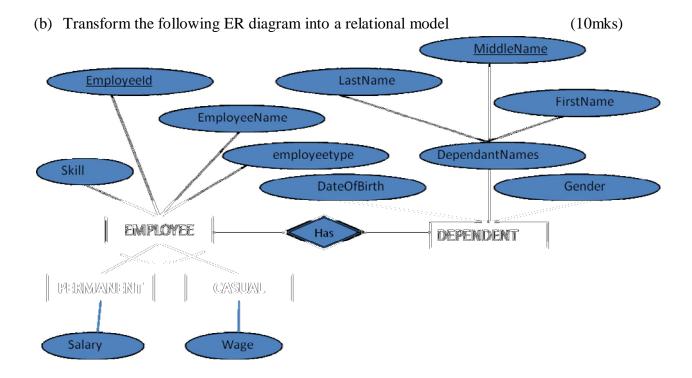
(e) lists STUDENTs **RegNo** and **Surname** for students who scored less than 20 in their cat mark (3mks)

QUESTION FOUR (20 MARKS) ELECTIVE

(a) The data below gives the attributes contained in text books purchase form

PurchaseOrderNo. PurchaseDate PublisherCode PublisherName ISBN BookTitle AuthorCode AuthorName Quantity

Normalize the data to Third Normal Form showing all the steps taken. (10mks)


(b) The six relations below are all in Third Normal Form and have been produced by normalization. Construct a Third Normal Form ER(entity-relationship) model from these relations. Do not show optionality or include relationship names. (10mks)

PROGRAMME	PROGRAMME CONTENT	COURSE
ProgCode	ProgCode	<u>CourseCode</u>
ProgDescription	CourseCode	CourseTitle
		*LectureId
		*RoomNo.
LECTURER	ROOM	BUILDING
LecturerId	<u>RoomNo</u> .	BuildingCode
LecturerName	RoomCapacity	BuildingName
Tel.No.	*BuildingCode	

QUESTION FIVE (20 MARKS) ELECTIVE

(a) Model the following scenario using Entity Relationship modeling showing cardinalities and relationships. Entities are capitalized. (10mks)

There must be at least one BOOK COPY of each BOOK TITLE in a library system. Each BOOK TITLE must belong to one particular CATEGORY, but a CATEGORY can exist in the system only if they are current (i.e. if the book is returned, a record of the loan is removed). A BORROWER can have several LOANs (or none at all) and each LOAN is for one BOOK COPY

QUESTION SIX (20 MARKS) ELECTIVE

(a)	What is database server?	(2mks)
(b)	Describe web database architecture	(5mks)
(c)	Explain encapsulation, inheritance and polymorphism as in object databases	(3mks)

(d) Explain any five types of complex applications that prompt the use of object databases instead of relational databases (10mks)