

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 311

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

STREAM:
DAY:
TIME:
9.00-11.00 A.M.

DATE:
07/12/2010

INSTRUCTIONS:

- Attempt Question ONE and Any other TWO

PLEASE TURNOVER

QUESTION ONE 30 MARKS

a) Write algorithm to find the maximum and the minimum values in the given list
[4marks]
b) Using Greedy method find the optimum solution for knapsack instances $\mathrm{N}=7, \mathrm{M}=15$

P1,P2, P3..........P7	$(10,5,15,7,6,18,3)$
W1,W2,W3.......W7	$(2,3,5,7,1,4,1)$

show your workings
[6 marks]
c) Given the following array determine wether x is present and if is present determine the position of x where $\mathrm{x}=143$ (show your workings)
$\mathrm{a}[1] \mathrm{a}[2] \mathrm{a}[3] \mathrm{a}[4] \mathrm{a}[5] \mathrm{a}[6] \mathrm{a}[7] \mathrm{a}[8] \mathrm{a}[9] \mathrm{a}[10] \mathrm{a}[11] \mathrm{a}[12] \mathrm{a}[13] \mathrm{a}[14]$
$-15,-6, \quad 0,7,9,23,54,82,101,112,125,131,142,151$
[5 marks]
d) How do we analyze the performance of an algorithm
e) Develop branch and bound technique for traveling sales man problem [5 marks]
f) Solve the following traveling sales man problem using Dynamic programming (show your workings)

QUESTION TWO 20 MARKS
a) Write and explain algorithm for 8 queen back tracking problem [5 marks]
b) Describe Dynamic programming technique [4 marks]
c) Describes two file organization techniques [4 marks]
d) Describe the divide and conquer algorithm [4 marks]
e)) Schedule the Two jobs that have to be scheduled on Two processor.

The matrix is $\mathrm{T}=\left(\begin{array}{ll}2 & 1\end{array}\right)$
$\left(\begin{array}{ll}3 & 3\end{array}\right)$
[3 marks]

QUESTION THREE 20 MARKS

a) Find the optimal placement for 13 programs on three tape where the programs are of lengths $12,5,8,32,7,5,18,26,4,3,11,10$ and 6.
b) Write DIJKSTRA's algorithm
[5 marks]
c) Consider the five-stage graph given below.

find the minimum cost from node S to node T and indicate the path clearly
[4 marks]
d) Describe 0/1 knapsack problem using Dynamic programming
[4 marks]
e) Describe index file organization
[2marks]

QUESTION FOUR 20 MARKS

a) Describe merge sort as used in divide and conquer technique
b) Describes two sorting techniques
[6 marks]
c) Solve the $0 / 1$ Knapsack problem using dynamic programming when $\mathrm{n}=5, \mathrm{~m}=12 \mathrm{P}=(10,15,6,8,4) \mathrm{W}=(4,6,3,4,2)$
[4 marks]
d) Describe binary search algorithm as used in searching and traversal

