KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 311

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

STREAM: Y3S1

DAY: MONDAY

TIME: 8.30 - 10.30 A.M.

DATE: 15/12/2008

INSTRUCTIONS:

Answer Question 1 and two other Questions

PLEASE TURN OVER

Question 1 (30 Marks)

(a) (i)	What is an algorithm?	(1 Mark)		
(ii)	Describe four characteristics of an algorithm	(2 Marks)		
(b)	(i) Write Quick sort algorithm	(6 Marks)		
	(ii) Determine the running time of b(i) quick sort algorithm	(3 Marks)		
(c) Determine the running time of the following algorithm Sub alg1				
	For $r=1$ to $2n$			
	s=n-4			
	while $(s < n)$ s=s+1			
	if (s =4 or s=9)			
	for m=1 to $\frac{1}{2}n^2$			
	display(m)			
	End if			
	End while			
	next r			
	End Sub			
(e) Wr	ite an analogy algorithm	(3 Marks)		
(f)	Explain the following types of analysis			
	(i) Best case	(1 Mark)		
	(ii) Worst case	(1 Mark)		
	(iii) Average case	(1 Mark)		
(g) De	scribe the five steps for carrying out experimental algorithmic analysis	(5 marks)		
(h) De	scribe divide and conquer method of developing algorithms	(3 marks)		
0				
Questi	ion 2 (20 Marks)			
(a) (i)	Write merge sort algorithm that sorts numbers in an array in ascending or	der		
(ii)	Determine the running time of merge sort algorithm	(6 Marks) (4 marks)		
(b) (i)	Describe the greedy method of developing algorithms	(3 marks)		
(ii) Describe Fractional knapsack problem				
(iii) Write the Fractional knapsack algorithm (4 M				
(iv) Determine the running time of the Fractional knapsack	(2 Marks)		

Question 3 (20 Marks)

(a) (i) (ii Det	Write a dynamic Longest sequence problem algorithm ermine the running time of the Longest sequence problem algorithm	(5 marks) (2 Marks)
(b)	Draw the following Turing machines that recognize $\Sigma(0,1)$	
	(i) A language of length divisible by 3	(3 Marks)
	(ii). A language that starts with substring 1001	(3 Marks).
	(iii) A language that contains substring 000	(2 Marks)

(c) Briefly describe the asymptotic notation. Give one advantage of using asymptotic notations to analyze algorithms. (5 Marks)

Question 4 (20 Marks)

(a) (i) Write a brute f	(5 marks)	
(ii Determine the running time of brute force pattern matching algorithm		
(b) Write a simple genetic algorithm		(4 Marks)
(c) Describe Dynamic method of solving problems		
(d) Describe the follo	owing growth functions, give one example of one algorithm	each
(i)	Linear growth	(1 Mark)
(ii)	Polynomial growth	(1 Mark)

(ii) Exponential growth (2 Marks)

Question 5 (20 Marks)

- (a) Write the fastest-way scheduling dynamic algorithm for automobile factory having two assembly lines(8 Marks)
- (b) Give four advantages of using standard algorithms while developing a system.

(4 Marks)

(c)	(i) Write a recursive algorithm of B	(5 Marks)	
	(ii) Determine the running time of	Binary search algorithm	(3 Marks)