UNIVERSITY EXAMINATIONS
 2010/2011 ACADEMIC YEAR
 FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 311
COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

STREAM:
 Y3S1

DAY:
TUESDAY
TIME:
9.00-11.00 A.M.

DATE:
15/03/2011
INSTRUCTIONS:
$>$ Answer question ONE in section A and any other TWO question in section B

SECTION A 30 MARKS

QUESTION ONE

a) Describe 0/1 knapsack problem using Dynamic programming
b) Describes following the sorting techniques
a) Merge sort
[3 marks]
b) Bubble sort
c) (i) What is algorithm ?
(ii) Describe elements of algorithm
d) Describe maximum and minimum algorithm
e) Using Greedy method find the optimum solution for knapsack instances $\mathrm{N}=7, \mathrm{M}=15$ P1,P2, P3...........P7 (10,5,15,7,6,18,3)
W1,W2,W3.........W7 (2,3,5,7,1,4,1) show your workings [5 marks]
f) Solve the following traveling sales man problem using Dynamic programming (show your workings)

	1	2	3	4
1	0	15	24	29
2	15	0	16	23
3	6	13	0	56
4	12	7	4	0

QUESTION TWO

a) Describe the algorithm for 4 queen back tracking problem
b) Given the following array determine wether x is present and if is present determine the position of x where $\mathrm{x}=143$ (show your workings)

$$
\left.\begin{array}{l}
\mathrm{a}[1] \mathrm{a}[2] \mathrm{a}[3] \mathrm{a}[4] \mathrm{a}[5] \mathrm{a}[6] \mathrm{a}[7] \mathrm{a}[8] \mathrm{a}[9] \mathrm{a}[10] \mathrm{a}[11] \mathrm{a}[12] \mathrm{a}[13] \mathrm{a}[14] \\
-15,-6,
\end{array} 0, \quad 7, \quad 9,23,54,82,101,112,125,131,142,151\right)
$$

c) How do we analyze the performance of an algorithm
d) Describe factors to consider when selecting a language to design algorithm [4marks]
e) Schedule the Two jobs that have to be scheduled on Two processor.

$$
\text { The matrix is } \mathrm{T}=\left(\begin{array}{ll}
2 & 1 \tag{array}
\end{array}\right)
$$

[3 marks]

QUESTION THREE

a) Find the optimal placement for 13 programs on three tape where the programs are of lengths $12,5,8,32,7,5,18,26,4,3,11,10$ and 6.
[5 marks]
b) Write algorithm for iterative back tracking
c) Describe binary search algorithm as used in searching and traversal [4 marks]
d) Describe principles of optimality
[4 marks]
e) How do you consider whether the selected option in greedy method is feasible
[2 mark]

QUESTION FOUR

a) Write algorithm of Greedy method
b) Consider the five-stage graph given below.

Find the minimum cost from node S to node T and indicate the path clearly
c) Describe knapsack problem algorithm
d) Explain the flow shop scheduling using a suitable example
e) Using back tracking fill the following graph

					Q			

