KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 311

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

DAY: TUESDAY

- TIME: 9.00 11.00 A.M.
- DATE: 15/03/2011

INSTRUCTIONS:

> Answer question ONE in section A and any other TWO question in section B

PLEASE TURN OVER

SECTION A 30 MARKS

QUESTION ONE

a) Describe 0/1 knapsack problem us	em using Dynamic programming [3 marks]			
b) Describes following the sorting t	techniques			
a) Merge sort	[3 marks]			
b) Bubble sort		[3 marks]		
c) (i) What is algorithm ?		[1 marks]		
(ii) Describe elements of algorithm	[4 marks]			
d) Describe maximum and minimum	[5 marks]			
e) Using Greedy method find the opt P1,P2, P3P7	1	es N=7,M =15		
W1,W2,W3W7				
	show your workings	[5 marks]		

f) Solve the following traveling sales man problem using Dynamic programming (*show your workings*)

[6 marks]

QUESTION TWO

a) Describe the algorithm for 4 queen back tracking problem [3 ma				
b) Given the following array determine wether x is present and if is present position of x where x = 143 (<i>show your workings</i>)	sent determine the			
a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a -15, -6, 0, 7, 9, 23, 54, 82, 101,112, 125, 131, 14				
c) How do we analyze the performance of an algorithm	[4 marks]			
d) Describe factors to consider when selecting a language to design algorithm [4marks]				
e) Schedule the Two jobs that have to be scheduled on Two processor.				
The matrix is $T = \begin{pmatrix} 2 & 1 \\ (3 & 3) \end{pmatrix}$	[3 marks]			
QUESTION THREE				
a) Find the optimal placement for 13 programs on three tape where th lengths 12,5,8,32,7,5,18,26,4,3,11,10 and 6.	e programs are of [5 marks]			
b) Write algorithm for iterative back tracking	[5 marks]			
c) Describe binary search algorithm as used in searching and traversal	[4 marks]			
d) Describe principles of optimality	[4 marks]			
e) How do you consider whether the selected option in greedy method is	s feasible			

e) How do you consider whether the selected option in greedy method is feasible [2 mark]

QUESTION FOUR

a) Write algorithm of Greedy method

[5 marks]

[4 marks]

b) Consider the five-stage graph given below.

Find the minimum cost from node S to node T and indicate the path clearly[2 marks]c) Describe knapsack problem algorithm[5 marks]

- d) Explain the flow shop scheduling using a suitable example [4 marks]
- e) Using back tracking fill the following graph

1				Q				
2						Q		
2 3 4								Q
4		Q						
							Q	
6	Q							
7			Q					
8					Q			