KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

- COURSE CODE: COMP 311
- COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS
- STREAM: Y3S1
- DAY: FRIDAY
- TIME: 9.00 11.00 A.M.
- DATE: 20/03/2009

INSTRUCTIONS:

Answer Question 1 and two other Questions

PLEASE TURN OVER

Question 1 (30 Marks)

(a)	Explain why enumerating all strings of length n, for large values of n is	s not computable. (2 Marks)
(b)	(i) Write algorithm to reverse elements of an array(ii) Determine the running time of algorithm in b (i)	(2 Marks) (2 Marks)
(c)	Determine the running time of the following algorithm	(4 Marks)
	algorithm alg1	
	For m=1 to n step 1	
	Display(m) For r=1 to n step 3 For s=1 to n step 1 display(s)	
	next s	
	next r next m End algorithm	
(d)	Compare and contrast divide and conquer and Dynamic strategies	of developing
	algorithms	(5 Marks)
(e)	(i) Describe four types of research methods in computer science	(4 marks)
	(ii) Discus how they have been used in development Design and analyst	sis of algorithms
	knowledge	(6 Marks)
(f)	Draw the following Turing machines $\Sigma(a,b)$ for A language of lengt	h divisible by 3 or
	5 containing only a's	(5 Marks)
Qu	estion 2 (20 Marks)	
(a)	(i) Write Booyer-more algorithm	(4 Marks)

(ii) Determine the running time of Booye-More algorithm in e(i) (2 Marks)

(b) Determine the running time of the following algorithm

(4 Marks)

```
algorithm alg2

For r=1 to n step 3

s=1

while(s<n)

s=s+1

if (s =>100)

End if

End while

next r

End algorithm
```

(c)	Describe Turing machines	and their application in co	omputer science	(4 Marks)
(\mathbf{v})	Deserree Farmy machines	and then appreation in e	sinpator serence	(111111111)

(d) Discus six differences between run time obtained using asymptotic notation and the actual time obtained when running the algorithm on actual computer (6 Marks)

Question 3 (20 Marks)

(a)	Explain four characteristics of an algorithm	(2 Marks)		
(b)	Draw the following Turing machines that recognize $\Sigma(a,b)$			
	(i) A language that contains aaaa	(3 Marks)		
	(ii) A language that starts with substring bba	(3 Marks).		
	(iii) A language that ends with substring baba(iv) A language that doesn't contain with substring bbb	(3 Marks) (3 Marks)		
(c)	(i) Write a search2-3 algorithm	(4 Marks)		
	(ii) Determine the running time of search23 algorithm	(2 Marks)		

Question 4 (20 Marks)

- (a) (i) Explain why computing all possible combination of stations is not computable for automobile factory having two assembly lines with many stations. (2 Marks)
 - (ii) Describe the fastest-way scheduling dynamic algorithm for automobile factory having two assembly lines(8 Marks)

(b)	b) (i) Write a recursive Fibonaci algorithm that displays the fibonaci of first			
		Numbers	(3 Marks)	
	(ii)	Write an iterative Fibonaci algorithm that displays the fibonaci of first n	numbers	
		and marks all even number with a *.	(4 Marks)	
	(iii)	Determine the running time of algorithm in c(ii)	(3 Marks)	
Question 5 (20 Marks)				
(a)	(i) V	Vrite a breadth first search algorithm	(5 marks)	
	(ii) I	Determine the running time of breadth first search algorithm	(3 Marks)	
(b)	(i) V	Vrite Djikstra algorithm	(5 Marks)	

(ii) Determine the running time of Djikstra algorithm (2 Marks)

(c) Describe pseudo code and why it's suitable language for designing algorithms (5 Marks)