

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COMP 311

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

STREAM: Y3S1
DAY: FRIDAY
TIME:
9.00-11.00 A.M.
DATE:20/03/2009
INSTRUCTIONS:

Answer Question 1 and two other Questions

PLEASE TURN OVER

Question 1 (30 Marks)

(a) Explain why enumerating all strings of length n , for large values of n is not computable.
(2 Marks)
(b) (i) Write algorithm to reverse elements of an array
(2 Marks)
(ii) Determine the running time of algorithm in b (i)
(c) Determine the running time of the following algorithm
algorithm alg1
For $\mathrm{m}=1$ to n step 1
Display(m)
For $\mathrm{r}=1$ to n step 3 For $\mathrm{s}=1$ to n step 1
display(s)
next s
next r
next m
End algorithm
(d) Compare and contrast divide and conquer and Dynamic strategies of developing algorithms
(5 Marks)
(e) (i) Describe four types of research methods in computer science
(4 marks)
(ii) Discus how they have been used in development Design and analysis of algorithms knowledge (6 Marks)
(f) Draw the following Turing machines $\Sigma(\mathrm{a}, \mathrm{b})$ for A language of length divisible by 3 or 5 containing only a's

Question 2 (20 Marks)

(a) (i) Write Booyer-more algorithm
(ii) Determine the running time of Booye-More algorithm in e(i)
(b) Determine the running time of the following algorithm

```
algorithm alg2
    For \(\mathrm{r}=1\) to n step 3
        \(\mathrm{s}=1\)
        while( \(\mathrm{s}<\mathrm{n}\) )
            \(\mathrm{s}=\mathrm{s}+1\)
            if ( \(\mathrm{s}=>100\) )
                        display(s)
            End if
                End while
    next \(r\)
End algorithm
```

(c) Describe Turing machines and their application in computer science
(d) Discus six differences between run time obtained using asymptotic notation and the actual time obtained when running the algorithm on actual computer

Question 3 (20 Marks)

(a) Explain four characteristics of an algorithm
(b) Draw the following Turing machines that recognize $\Sigma(\mathrm{a}, \mathrm{b})$
(i) A language that contains aaaa
(ii) A language that starts with substring bba
(3 Marks).
(iii) A language that ends with substring baba
(3 Marks)
(iv) A language that doesn't contain with substring bbb
(c) (i) Write a search2-3 algorithm
(4 Marks)
(ii) Determine the running time of search 23 algorithm

Question 4 (20 Marks)

(a) (i) Explain why computing all possible combination of stations is not computable for automobile factory having two assembly lines with many stations. (2 Marks)
(ii) Describe the fastest-way scheduling dynamic algorithm for automobile factory having two assembly lines
(8 Marks)
(b) (i) Write a recursive Fibonaci algorithm that displays the fibonaci of first n Numbers
(ii) Write an iterative Fibonaci algorithm that displays the fibonaci of first n numbers and marks all even number with a *.
(iii) Determine the running time of algorithm in c (ii)

Question 5 (20 Marks)

(a) (i) Write a breadth first search algorithm (5 marks)
(ii) Determine the running time of breadth first search algorithm
(b) (i) Write Djikstra algorithm
(ii) Determine the running time of Djikstra algorithm (2 Marks)
(c) Describe pseudo code and why it's suitable language for designing algorithms (5 Marks)

