UNIVERSITY

KABARAK

UNIVERSITY EXAMINATIONS

2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 311

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

- STREAM: Y3S1
- DAY: MONDAY
- TIME: 9.00 11.00 A.M.
- DATE: 02/08/2010

INSTRUCTIONS:

• Attempt **Question ONE** and **Any other TWO**

PLEASE TURNOVER

QUESTION ONE 30 MARKS

a) Describe 0/1 knapsack problem using Dynamic programming	[4 marks]
b) Write algorithm of divide and conquer technique	[4 marks]
c) (i) What is algorithm ?(ii) Describe elements of algorithm	[2 marks] [4 marks]

d) Describe merge sort as used in divide and conquer technique [5 marks]

- e) Using Greedy method find the optimum solution for knapsack instances N=7,M =15 P1,P2, P3.....P7 (10,5,15,7,6,18,3) W1,V $_1$ V3.....W7 (2,3,5,7,1,4,1) show your workings [5 marks]
- f) Solve the following traveling sales man problem using Dynamic programming (*show your workings*)

[6 marks]

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

<u>QUESTION TWO</u> (20 Marks)

a) Describe the algorithm for 4 queen back tracking problem	[5 marks]				
b) Write linear search algorithm as used in search and traversal technique	[4 marks]				
c) Differentiate between divide and conquer technique and Dynamic prog	ramming [5 marks]				
d) Describe factors to consider when selecting a language to design algorithm [3marks]					
e) Schedule the Two jobs that have to be scheduled on Two processor.					
The matrix is $T = \begin{pmatrix} 2 & 1 \\ (3 & 3) \end{pmatrix}$	[3 marks]				
<u>QUESTION THREE (</u>20 Marks)					
a) Write algorithm of finding maximum and minimum	[5 marks]				
b) Write algorithm for iterative back tracking	[5 marks]				
c) Find the optimal placement for 13 programs on three tape where the programs are of lengths 12,5,8,32,7,5,18,26,4,3,11,10 and 6 using three tapes are T ₀ , T ₁ and T ₂ the programs are distributed to these tapes and total retrieval time [4 marks]					
d) Describe the three types of file organization	[6 marks]				
<u>QUESTION FOUR (</u> 20 Marks)					
a) Write algorithm of Greedy method	[5 marks]				
b) Write DIJKSTRA's algorithm	[5 marks]				
c) Describe knapsack problem algorithm	[5 marks]				
d) Solve the 0/1 Knapsack problem using dynamic programming when $n = 4$, $m = 15$ P = (10,10,12,18) W = (2,4,6,9)	[5marks]				