KABARAK

UNIVERSITY EXAMINATIONS 2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 311

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

STREAM:
DAY: MONDAY
TIME:
9.00-11.00 A.M.

DATE:
02/08/2010

INSTRUCTIONS:

- Attempt Question ONE and Any other TWO

PLEASE TURNOVER

QUESTION ONE 30 MARKS

a) Describe 0/1 knapsack problem using Dynamic programming [4 marks]
b) Write algorithm of divide and conquer technique [4 marks]
c) (i) What is algorithm ?
(ii) Describe elements of algorithm [4 marks]
d) Describe merge sort as used in divide and conquer technique
e) Using Greedy method find the optimum solution for knapsack instances $\mathrm{N}=7, \mathrm{M}=15$
P1,P2, P3...........P7 (10,5,15,7,6,18,3)

W1,V 1 V3.........W7 $(2,3,5,7,1,4,1)$
show your workings [5 marks]
f) Solve the following traveling sales man problem using Dynamic programming (show your workings)

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

QUESTION TWO (20 Marks)

a) Describe the algorithm for 4 queen back tracking problem
b) Write linear search algorithm as used in search and traversal technique [4 marks]
c) Differentiate between divide and conquer technique and Dynamic programming
d) Describe factors to consider when selecting a language to design algorithm [3marks]
e) Schedule the Two jobs that have to be scheduled on Two processor.

$$
\text { The matrix is } \mathrm{T}=\left(\begin{array}{ll}
2 & 1
\end{array}\right)
$$

[3 marks]

QUESTION THREE (20 Marks)

a) Write algorithm of finding maximum and minimum [5 marks]
b) Write algorithm for iterative back tracking
c) Find the optimal placement for 13 programs on three tape where the programs are of lengths $12,5,8,32,7,5,18,26,4,3,11,10$ and 6 using three tapes are T_{0}, T_{1} and T_{2} the programs are distributed to these tapes and total retrieval time [4 marks]
d) Describe the three types of file organization
[6 marks]

QUESTION FOUR (20 Marks)

a) Write algorithm of Greedy method
[5 marks]
b) Write DIJKSTRA's algorithm
[5 marks]
c) Describe knapsack problem algorithm
d) Solve the $0 / 1$ Knapsack problem using dynamic programming when $\mathrm{n}=4, \mathrm{~m}=15 \mathrm{P}=(10,10,12,18) \mathrm{W}=(2,4,6,9)$
[5marks]

