KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 223

COURSE TITLE: DIGITAL CIRCUIT DESIGN

STREAM:	Y2S2
DAY:	TUESDAY
TIME:	2.00 – 4.00 P.M.

DATE: 22/03/2011

INSTRUCTIONS:

• Answer Question **ONE** and any other **TWO** Questions. Question One carries **30marks** while each of the other Two Questions carry **20marks**.

PLEASE TURN OVER

QUESTION 1 (30 marks)

a) i) Perform the following arithmetic	
I) $102FH + ABCH$	(2mks)
II) 00001000 ₂ – 00000011 ₂	(2mks)
ii) Convert $(3.625)_{10}$ into binary	(2mks)

b) i) State De-Morgan's theorem of two variables (2mks) ii) Write a simplified logic expression for the given logic K-maps (6mks)

c) i) Draw circuit symbol of NAND gate.	(1mk)
ii) Show using diagrams how you can use a NAND gate to implement an	AND
function and an OR function	(4mks)
d) i) What is a truth table?	(1mk)

ω)		(11111)
	ii) State two uses of truth tables	(2mks)
	iii) Negate the given logic function	(2mks)

$$X.\bar{Y}+\bar{X}.Y$$

e) In a chemical processing plant, a liquid chemical is used in a manufacturing process. The chemical is stored in three different tanks. A level sensor in each tank produces a HIGH voltage when the level of chemical in the tank drops below a specified fixed point. Design a circuit that monitors the chemical level in each tank and indicates when the level in any two of the tanks drops below the specified point

(3mks)

f) Draw a combinational circuit to implement the given logic function (3mks)

 $W = XY(Z + Y) + X \oplus Z$

QUESTION 2 (20 marks)

a) i) Draw a logic symbol of a NOR gate (1mk) ii) Manipulate the given logic function into a form which can be implemented using NOR gates only (5mks)

$$Y = \overline{A}B\overline{C} + AC + \overline{B}$$

- iii) Draw the logic diagram of the resulting manipulated function in (ii) above (3mks)
- b) Simplify the following logic expressions and draw the logic circuits for the simplified functions.

i)
$$W = X \cdot Y + \overline{X} \cdot \overline{Y} + \overline{X} \cdot \overline{Y}$$
 (2mks)

ii)
$$Y = (\overline{\overline{A} + C}) \cdot (\overline{B} + \overline{D})$$
 (2mks)

c) Consider the given circuit.

- i). obtained the unsimplified output logic expression for the above circuit. (3mks)
- ii). Using De-Morgan's and Boolean theorem's, simplify the output logic expression in (i). (3mks)
- iii). Draw a logic circuit of the simplified function in (ii). (1mk)

QUESTION 3 (20 marks)

a) i) Design and draw a two bit comparator circuit that will produce a logic 1	output when
the two input signals are identical.	(3mks)
ii) Manipulate the output logic expression of the two bits circuit in (i) into a	a form which
can be implemented using NAND gates only.	(2mks)
iii) Draw the circuit diagram of the manipulated function in (ii)	(2mks)

b) i) Prepare K-map for the given function

I)
$$W = \overline{ABCD} + ABCD + \overline{ABD} + \overline{ACD} + \overline{ACD}$$

II) $Y = B + AC$

- ii) Use the prepared K-map to simplify the function (I) and write down the simplified logic function (2mks)
- c) Explain the following logic circuits

i)	Sequential logic circuit	(1mks)
ii)	Combinational logic circuit	(1mks)

d) State and explain two classifications of sequential logic circuits (3mks)

QUESTION 4 (20 marks)

a) Differentiate between the following		(4mks)
i).	Programmable logic devices and fixed logic devices	
ii).	Finite state machines and algorithmic state machines.	
b) i) What is a counter?		(1mk)
ii) State two uses of counters		(2mks)
iii) Draw a 4-bit ripple digital counter.		(4mks)
iv) State two advantages of synchronous counters		(2mks)

c) Connect the chips provided below to implement

 $W = (\overline{X + Y})(Z + Y)$, given that pin 7 and 14 on each IC represent GND and $+V_{ss}$ respectively. (5mks)

d) State two uses of shift register

(2mks)

(6mks)

QUESTION 5 (20 marks)

a) Define the following terms as used with sequential circuits

(4mks)

(1mk)

(4mks)

- Clock duty cycle
- State diagrams ii).
- State tables iii).

i).

iv). Clock width

b) Consider the following sequential circuit

The circuit has one input A, one output Y and two state variables Q_1 and Q_2

- Write the Boolean expressions which can be used to determine the behavior of the i). circuit (3mks)
- From the Boolean expressions in (i), develop the state table for this circuit. ii).
- (4mks) Use the state table to develop the state diagram for this circuit. iii). (4mks)
- c) i) What is a programmable array?
 - ii) Draw a programmable array which can give

$$W_1 = \bar{A} + B$$
, $W_2 = \bar{A} + \bar{B}$, $W_3 = A + \bar{B}$, $W_4 = A + B$