KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER

SCIENCE

COURSE CODE: COMP 223

- **COURSE TITLE: DIGITAL CIRCUIT DESIGN**
- STREAM: Y2S2
- DAY: THURSDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/08/2009

INSTRUCTIONS:

- 1. Answer **<u>QUESTION ONE</u>** and **<u>any other two</u>** questions.
- 2. Question One carries 30 marks while the others carry 20 marks each.
- 3. Do not put any mark on the question paper

PLEASE TURN OVER

QUESTION ONE (30 MARKS)

a. b.	What is a full subtractor? Explain its working using truth tables and a logic diagram. What is a race around condition? How is it eliminated?	(5 mks) (2mks)				
c.	With the aid of a logic circuit, show how an XNOR gate can be realized using NAND gates	(6mks)				
d. e.	With the aid of diagrams explain the working of an SR flip-flop In a committee of four members (two ladies and two gents), a motion is passed if there are tw or two gents and a lady or two gents and a lady, or the four members. Design a gating circuit lights up a bulb when the motion is passed.	(6mks) o ladies which (4mks)				
f.	Design a MOD-14 asynchronous counter and explain its working	(4mks)				
g.	What is the difference between combinational and sequential circuits? Give examples	(3mks)				
QUESTION TWO (20 MARKS)						
a.	 Suppose you have built a system and you are asked to monitor when it malfunctions. There are conditions you are checking: Temperature; hot/cold Humidity humid/low Light: day/dark Wind windy/calm The system malfunctions when: It is cold, humid, and dark It is humid, dark and calm It is hot, low humidity, dark, windy It is cold, dark, windy, and the humidity is low Cold and humid but light and wind are; day and calm respectively, i) Draw the truth table for the above conditions ii) Express the system's behaviour as a function F where F =1 exactly when the system malfunctions 	re four (3mks) (2mks)				
	iii) Using sum of products simplify the expression when the system malfunctions by using	g K-maps. (3mks)				

- iv) Draw the simplified logic circuit
- b. Using K-maps reduce:

i)	$\sum m(0,2,4,5,6,9,10,11,13,14,15)$	
ii)	$\prod M(0,1,7,8,10,12,13) + d(9,14,15)$	(6mks)

c. Simplify the following expression:

$$F = \overline{ABCD} + \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD}$$
 Using Boolean algebra.

(4 mks)

(2mks)

QUESTION THREE (20 MARKS)

a. b.	With the aid of a neat diagram explain the master-slave flip-flop With an aid of a diagram explain the working of a D-flip flop.	(7mks) (4mks)			
c.	With the aid of a neat diagram ,explain the serial-in serial out shift register	(5mks)			
d.	What is a half-adder? Explain using truth tables and a circuit diagram.	(4 mks)			
QUESTION FOUR (20 MARKS)					
a.	Design a mod-13 synchronous counter using T-flip flops	(15mks)			
b.	Design a 3 to 8 line decoder using NAND gates	(5mks)			
QUESTION FIVE (20 MARKS)					
a.	Draw a circuit of a standard diode - transistor NAND gate and explain its working.	(12 mks)			
b.	A light bulb is to be controlled by four switches, the bulb glows whenever switches A, B and	C are in			

b. A light bulb is to be controlled by four switches, the bulb glows whenever switches A, B and C are in the same positions. When B and C are in different positions, the bulb glows depending upon the position of switch D. It also glows when C and D are on regardless of the position of A and C. Assume the positions are ON=1 and OFF=0.

i)	Draw the truth table for the situation above.	(3mks)
ii)	Represent the function F as a function of A, B, C and D.	(2mk)
iii)	Simplify the function and design a practical switching circuit.	(3mks)