

UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE:

COURSE TITLE:
STREAM:
DAY:
TIME:
2.00 - 4.00 P.M.

DATE:
06/08/2009

INSTRUCTIONS:

1. Answer QUESTION ONE and any other two questions.
2. Question One carries 30 marks while the others carry 20 marks each.
3. Do not put any mark on the question paper

QUESTION ONE (30 MARKS)

a. What is a full subtractor? Explain its working using truth tables and a logic diagram.
(5 mks)
b. What is a race around condition? How is it eliminated?
c. With the aid of a logic circuit, show how an XNOR gate can be realized using NAND gates (6 mks)
d. With the aid of diagrams explain the working of an SR flip-flop
(6mks)
e. In a committee of four members (two ladies and two gents), a motion is passed if there are two ladies or two gents and a lady or two gents and a lady, or the four members. Design a gating circuit which lights up a bulb when the motion is passed.
f. Design a MOD-14 asynchronous counter and explain its working
g. What is the difference between combinational and sequential circuits? Give examples

QUESTION TWO (20 MARKS)

a. Suppose you have built a system and you are asked to monitor when it malfunctions. There are four conditions you are checking:

- Temperature; hot/cold
- Humidity humid/low
- Light: day/dark
- Wind windy/calm

The system malfunctions when:

- It is cold, humid, and dark
- It is humid, dark and calm
- It is hot, low humidity, dark, windy
- It is cold, dark, windy, and the humidity is low
- Cold and humid but light and wind are; day and calm respectively,
i) Draw the truth table for the above conditions
ii) Express the system's behaviour as a function F where $\mathrm{F}=1$ exactly when the system malfunctions
iii) Using sum of products simplify the expression when the system malfunctions by using K-maps.
(3mks)
iv) Draw the simplified logic circuit
b. Using K-maps reduce:
i) $\quad \sum m(0,2,4,5,6,9,10,11,13,14,15)$
ii) $\quad \Pi M(0,1,7,8,10,12,13)+d(9,14,15)$
c. Simplify the following expression:

$$
\begin{align*}
& F=\overline{A B C D}+\bar{A} B C \bar{D}+A B \overline{C D}+A \overline{B C} D+\overline{A B} C \bar{D}+\bar{A} B \overline{C D}+ \\
& A B C D+A B C \bar{D}+\bar{A} B C D+A \bar{B} C D+A B \bar{C} D+\bar{A} B \bar{C} D \quad \text { Using Boolean algebra. } \tag{4mks}
\end{align*}
$$

QUESTION THREE (20 MARKS)

a. With the aid of a neat diagram explain the master-slave flip-flop
b. With an aid of a diagram explain the working of a D-flip flop.
c. With the aid of a neat diagram ,explain the serial-in serial out shift register
d. What is a half-adder? Explain using truth tables and a circuit diagram.

QUESTION FOUR (20 MARKS)

a. Design a mod-13 synchronous counter using T-flip flops
b. Design a 3 to 8 line decoder using NAND gates

QUESTION FIVE (20 MARKS)

a. Draw a circuit of a standard diode - transistor NAND gate and explain its working.
b. A light bulb is to be controlled by four switches, the bulb glows whenever switches A, B and C are in the same positions. When B and C are in different positions, the bulb glows depending upon the position of switch D . It also glows when C and D are on regardless of the position of A and C . Assume the positions are $\mathrm{ON}=1$ and $\mathrm{OFF}=0$.
i) Draw the truth table for the situation above.
ii) Represent the function F as a function of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
iii) Simplify the function and design a practical switching circuit.

