

UNIVERSITY

UNIVERSITY EXAMINATIONS
 2009/20010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE COURSE CODE: COMP 223

COURSE TITLE: DIGITAL CIRCUIT DESIGN

STREAM: Y2S2
DAY: WEDNESDAY
TIME:
9.00-11.00 A.M.

DATE:
11/08/2010

INSTRUCTIONS:
Answer Question ONE and ANY other TWO

QUESTION 1 (30 MARKS)

a) Explain the following logics
i) Sequential logic
(2 marks)
ii) Combinational logic
b) Consider a data latch below:

State the status of Q if
i) \quad Preset' $=0$
(1 mark)
ii) Clear' $=0$
c) State ANY two common uses of a register.
d) i) Draw a diagram of a series-in series-out shift register employing four D latches.
ii) Complete the table below for a shift register.

	In	Q_{1}	Q_{2}	Q_{3}	Q_{4}
t_{0}	1				
t_{1}	0	1			
t_{2}	1		1		
t_{3}	1	1		1	
t_{4}	0	1	1		1
t_{5}	0		1	1	

f) Simplify the following expressions and draw the simplified logic circuit.
i) $\quad Y=\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} \bar{D}$
ii) $\quad Y=(\overline{\bar{A}}+C) \cdot(B+\bar{D})$
g) Determine the output of the following logic circuits:

(4 marks)
h) i) State the function of a MUX.
ii) Draw a functional diagram of a 2-input MUX and deduce its output expression.
iii) List two applications of a MUX

QUESTION 2 (20 MARKS)

a) List TWO problems encountered with asynchronous counters (2 marks)
b) List THREE differences between the asynchronous and synchronous counters.
c) Draw a synchronous (parallel) counter and explain its operation. (10 marks)
d) Connect the chips provided below to implement $f=a b+b$ 'c given pin 7 and 14 on each IC represent GND and $+V_{\text {DD }}$ respectively.

QUESTION 3 (20 MARKS)

a) Given the numbers, decimal 227 and binary 1101101, convert both numbers to decimal, binary, hexadecimal and BCD equivalents where applicable.
(8 marks)
b) i) With the use of logic gates, draw a logic circuit of a JK flip flop.
(3 marks)
ii) Present the truth table of a JK flip flop.
(5 marks)
iii) Complete the following timing diagram of a NGT JK latch (3 marks)

iv) State one advantage of JK over SR latch

QUESTION 4 (20 MARKS)

a) Design a counter that counts from 0 to 9 using JK flip-flops that respond to NGT of the clock. Use additional logic to generate an output Z which activates an LED when a count of 5 or 7 is attained.
(8 marks)
b) i) Draw a block diagram of a full adder
(2 marks)
ii) Give the truth table of the full adder using three inputs A, B and Cin (Carryin) and the outputs Sum and carry-out.
(4 marks)
iii) Derive the expressions for sum and carry-out based on the truth table; hence draw a logic diagram for the full adder.

