



# **UNIVERSITY**

# UNIVERSITY EXAMINATIONS 2008/2009 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

**COURSE CODE: PHYS 420** 

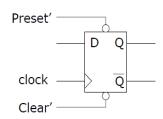
**COURSE TITLE: DIGITAL ELECTRONICS** 

STREAM: SESSION VIII

**DAY:** FRIDAY

TIME: 9.00 - 11.00 A.M.

DATE: 13/08/2010

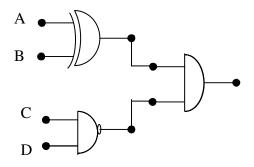

**INSTRUCTIONS:** 

Answer Question **ONE** and ANY other **TWO** 

## **QUESTION 1 (30 MARKS)**

b)

- a) Explain the following logics
  - i) Sequential logic (2 marks)ii) Combinational logic (2 marks)
  - Consider a data latch below:

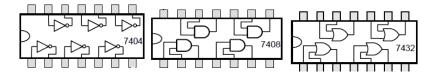



State the status of Q if

- i) Preset'=0 (1 mark) ii) Clear'=0 (1 mark)
- c) State ANY two common uses of a register. (2 marks)
- d) i) Draw a diagram of a series in series out shift register employing four D latches. (4 marks)
  - ii) Complete the table below for a shift register. (3 marks)

|                | In | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ |
|----------------|----|-------|-------|-------|-------|
| $t_0$          | 1  |       |       |       |       |
| $t_1$          | 0  | 1     |       |       |       |
| $t_2$          | 1  |       | 1     |       |       |
| t <sub>3</sub> | 1  | 1     |       | 1     |       |
| t <sub>4</sub> | 0  | 1     | 1     |       | 1     |
| t <sub>5</sub> | 0  |       | 1     | 1     |       |

- f) Simplify the following expressions and draw the simplified logic circuit.
  - i)  $Y = \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D}$  (3 marks)
  - ii)  $Y = (\overline{A} + C) \cdot (B + \overline{D})$  (3 marks)
- g) Determine the output of the following logic circuits:

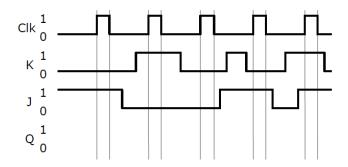



(4 marks)

- h) i) State the function of a MUX.
  - ii) Draw a functional diagram of a 2-input MUX and deduce its output expression. (3 marks)
  - iii) List two applications of a MUX (2 marks)

### **QUESTION 2 (20 MARKS)**

- a) List TWO problems encountered with asynchronous counters (2 marks)
- b) List THREE differences between the asynchronous and synchronous counters. (3 marks)
- c) Draw a synchronous counter and explain its operation. (10 marks)
- d) Connect the chips provided below to implement f=ab+b'c given pin 7 and 14 on each IC represent GND and  $+V_{DD}$  respectively. (5 marks)




### **QUESTION 3 (20 MARKS)**

a) Given the numbers, decimal 227 and binary 1101101, convert both numbers to decimal, binary, hexadecimal and BCD equivalents where applicable.

(8 marks)

- b) i) With the use of logic gates, draw a logic circuit of a JK flip flop. (3 marks)
  - ii) Present the truth table of a JK flip flop. (5 marks)
  - iii) Complete the following timing diagram of a NGT JK latch (3 marks)



iv) State one advantage of JK over SR latch

(1 mark)

### **QUESTION 4 (20 MARKS)**

- a) Design a counter that counts from 0 to 9 using JK flip-flops that respond to NGT of the clock. Use additional logic to generate an output Z which activates an LED when a count of 5 or 7 is attained. (8 marks)
- b) i) Draw a block diagram of a full adder.

(2 marks)

- ii) Give the truth table of the full adder using three inputs A, B and Cin (Carry-in) and the outputs Sum and carry-out. (4 marks)
- iii) Derive the expressions for sum and carry-out based on the truth table; hence draw a logic diagram for the full adder. (6 marks)