KABARAK

UNIVERSITY

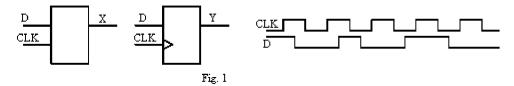
UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SCIENCE

COURSE CODE: PHYS 420

- **COURSE TITLE: DIGITAL ELECTRONICS**
- STREAM: SESSION VII & VIII
- DAY: SATURDAY
- TIME: 2.00 4.00 P.M.
- DATE: 28/11/2009


INSTRUCTIONS:

ANSWER QUESTION **ONE** AND ANY OTHER **TWO** QUESTIONS.

PLEASE TURN OVER

QUESTION 1 (24 marks)

- (a) Using only two-input NOR gates, show how a NAND gate can be made. (2marks)
- (b) The circuits in fig. 1 are a D-latch and a D-flip-flop. Complete the timing diagram by drawing the waveforms of X and Y assuming that they are both low initially. (2marks)

(c) Given a logic function

 $f = A \cdot B \cdot C \cdot D + A \cdot D + B \cdot C \cdot D + A \cdot B \cdot C \cdot D + A \cdot B \cdot D$

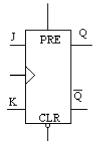
(i)	Draw a Karnaugh map for f and write simplified function of f	(3marks)
(ii)	Design a NAND-only circuit to implement f.	(2marks)
(iii)	Design a NOR-only circuit to implement f.	(2marks

(d)

- (i) Determine the maximum conversion time of an 8-bit ADC with a 2-MHz clock, if the ADC is of a staircase ramp type. (1mark)
- (ii) Determine the percentage resolution of a 12-bit BCD DAC. (1mark)

(e)

- i. Represent the function as a sum of product form from the pattern in a Karnaugh map below. (1 mark)
- ii. Using Boolean algebra to simplify the logic expression in (i) and give the name of the gate. (1 mark)


c A,B				
	0	1	0	1
	1	0	1	0

(f) Differentiate between Combinational and sequential circuits	(3 marks)
(g) Describe how a 2-to-1 MUX functions	(6 marks)

QUESTION 2 (12 marks)

- (a) If the 3-bit binary number *A B C* represents the digits 0 to 7:
 - (i) Make a truth table for *A*, *B*, *C* and *Q*, where *Q* is true only when an odd number of bits are true in the number.
 - (ii) Write a statement in Boolean algebra for Q.
 - (iii) Convert this equation to one that can be mechanized using only two XOR gates. Draw the resulting circuit.

- (b) Show how gated-SR flip-flop can be modified to operate as a D flip-flop and draw the truth table for D flip-flop. (2marks)
- (c) Design a modulo-7 asynchronous counter using JK flip-flops and sketch the counter circuit. The JK flip-flop is as shown below. (3marks)

(d) Modify the counter circuit in (c) above, so that the counter can be used as an electronic dice, i.e. counting, 1, 2, 6 rather than 0, 1, 2....6. (2marks)

QUESTION 3 (12 marks)

(a) With show of diagrams explain how adder-subtractor functions	(10 marks)
(b) Differentiate between asynchronous and synchronous systems.	(2 marks)

QUESTION 4 (12 marks)

With show of diagrams explain how XOR-gates can be used as :				
i.	A controlled inverter.	(4 marks)		
ii.	A parity generator and checker.	(8 marks)		

QUESTION 5 (12 marks)

- (a) Show how four D type flip-flops can be connected to form a shift register where data be rotated in, and explain how it functions. (6marks)
 (b) A 2 bit binery number is represented as A A A where A is the LSP. Design a logic
- (b) A 3-bit binary number is represented as A₂ A₁ A₀, where A₀ is the LSB. Design a logic circuit which will produce a HIGH output whenever the binary number is either 1, 2, 4 or 7. Impliment the circuit using :

(i) a 1 to 8 MUX.	(3marks)
(ii) a 1 to 4 MUX.	(3marks)

QUESTION 06 (12 marks)

With show of diagrams explain how a full adder can be developed out of two half-adders. (12 marks) (a) Why is the above scheme impractical for implementing a 12-bit D/A converter circuit? (1mark)

(b) Why is a sample-and-hold amplifier usually used with an A/D converter? (3mark)