UNIVERSITY

UNIVERSITY EXAMINATIONS
2010/2011 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATIONS

COURSE CODE: TLCM 221

COURSE TITLE: DIGITAL ELECTRONICS AND MICROPROCESSOR CONTROL

STREAM:
 Y2S2

DAY:
TUESDAY
TIME:
2.00-5.00 P.M.

DATE:
22/03/2011

INSTRUCTIONS:

- Answer Question ONE and any other THREE Questions. Question One carries 20marks while each of the other Three Questions carry 10marks.
- The 8085 Instruction set is appended.

PLEASE TURN OVER

QUESTION 1 (20 marks)

a) i) Perform the following arithmetic

I) $242 \mathrm{FH}+\mathrm{ABOH}$	$(1 \mathrm{mks})$
II) $00001000_{2}-00000011_{2}$	$(1 \mathrm{mks})$
ii) Convert $(15.625)_{10}$ into binary	$(2 \mathrm{mks})$

b) Write a simplified logic expression for the given logic K-map

c) i) Draw circuit symbol of NAND gate.
(1mk)
ii) Show using diagrams how you can use a NAND gate to implement an AND function and an OR function
d) i) State two uses of truth tables
ii) Negate the given logic function

$$
X . \bar{Y}+\bar{X} \oplus Y
$$

e) Write down an assembly language program of adding two numbers 234 H and 566 H using8085 instruction set
f) Differentiate between the following
i). Instruction set and addressing modes
ii). Register addressing mode and register indirect addressing mode with respect to 8085 microprocessor. Write a short 8085 instruction example to illustrate the difference between the two addressing.
(2mks)

QUESTION 2 (10 marks)

a) i) Draw a logic symbol of a NOR gate
(1mk)
ii) Manipulate the given logic function into a form which can be implemented using NOR gates only

$$
Y=\bar{A} B \bar{C}+A C+\bar{B}
$$

b) Consider the given circuit.

i). obtained the unsimplified output logic expression for the above circuit
(2mks)
ii). Using De-Morgan's and Boolean theorem's, simplify the output logic expression in (i)
c) Simplify the following logic expression and draw the logic circuits for the simplified function.

$$
\begin{equation*}
W=X \cdot Y+\bar{X} \cdot Y+\bar{X} \cdot \bar{Y} \tag{2mks}
\end{equation*}
$$

QUESTION 3 (10 marks)

a) Differentiate between the following
i.) Machine code programming and assembly language programming (1mks)
ii.) The assembler program and the compiler program
b) Write an algorithm for adding odd numbers between 0 and 20 for the 8085 microprocessor. Develop your program as follows
i.) Assuming the first memory location is 26 DDH ; write the assembly language program to perform this operation using appropriate 8085 instruction set. Show also memory contents in hex codes.
(3mks)
ii.) Simply your program in (ii) using a flow chart
c) i) Hand assemble the given assembly language program of 8085 microprocessor assuming that the first memory locations is 0066 H .

START:	MVI B, 4FH
MVI C, 78 H	
MOV A, C	
OUT 07H	
CALL DEL	
MVI A, 8FH	
MVI B, 68H	
SUB B	
ANI 0FH	
STA 2070H	
CALL DEL	

AGAIN: IN F2H
CMA
ORA A
JZ AGAIN
DEL: LXI D, 00FFH
REP: DCX D
MOV A, E
ORA D
JNZ REP
RET
ii) State the address of the following in the hand assembled program
I) DEL label
II) STA instruction

QUESTION 4 (10 marks)

a) i) State and explain two types of interfaces.
(1mk)
ii) State and explain two features that need to be considered when selecting an interface circuit
(1mk)
b) i) State and explain two modes of operation of 8255 PPI
(1mk)
ii) Present the control word format of 8255 PPI
c) A microprocessor-based system uses the 8255 PPI as its I/O device. If this system is to be used to read bit pattern from port C and output the same to port A and Port B continuously and endlessly;
i) Write an assembly language program to perform this operation using appropriate 8085 instruction set. Assume that the first memory location is 78EFH and use a delay constant of FDEFH between the outputs in register pair BC.
ii) State the memory address of the last byte of the instruction in (i) above
iii) State two advantages of using mnemonics as opposed to binary values or hex codes.

QUESTION 5 (10 marks)

a) Define the following terms as used with sequential circuits
i). Clock duty cycle
ii). State diagrams
iii). State tables
iv). Clock width
b) Consider the following sequential circuit

The circuit has one input A, one output Y and two state variables Q_{1} and Q_{2}
i). Write the Boolean expressions which can be used to determine the behavior of the circuit
(2mks)
ii). From the Boolean expressions in (i), develop the state table for this circuit.
iii). Use the state table to develop the state diagram for this circuit.
c) Draw a programmable array which can give

$$
W_{1}=\bar{A}+B, W_{2}=\bar{A}+\bar{B}, W_{3}=A+\stackrel{-}{B}, W_{4}=A+B
$$

THE 8085 INSTRUCTION SET

CE	ACI	N	3D	DCR	A	7E	MOV	A,M
8F	ADC	A	05	DCR	B	47	MOV	B,A
88	ADC	B	0D	DCR	C	40	MOV	B,B
89	ADC	C	15	DCR	D	41	MOV	B,C
8A	ADC	D	1D	DCR	E	42	MOV	B,D
8B	ADC	E	25	DCR	H	43	MOV	B,E
8C	ADC	H	2D	DCR	L	44	MOV	B, H
8D	ADC	L	35	DCR	M	45	MOV	B,L
8E	ADC	M	0B	DCX	B	46	MOV	B,M
87	ADD	A	1B	DCX	D	4F	MOV	C,A
80	ADD	B	2B	DCX	H	48	MOV	C, B
81	ADD	C	3B	DCX	SP	49	MOV	C, C
82	ADD	D	F3	DI		4A	MOV	C, D
83	ADD	E	FB	EI		4B	MOV	C, E
84	ADD	H	76	HLT		4C	MOV	C, H
85	ADD	L	DB	IN	N	4D	MOV	C,L
86	ADD	M	3C	INR	A	4E	MOV	C,M
C6	ADI	N	04	INR	B	57	MOV	D, A
A7	ANA	A	0C	INR	C	50	MOV	D, B
A0	ANA	B	14	INR	D	51	MOV	D, C
A1	ANA	C	1C	INR	E	52	MOV	D, D
A2	ANA	D	24	INR	H	53	MOV	D,E
A3	ANA	E	2C	INR	L	54	MOV	D, H
A4	ANA	H	34	INR	M	55	MOV	D,L
A5	ANA	L	03	INX	B	56	MOV	D, M
A6	ANA	M	13	INX	D	5F	MOV	E,A
E6	ANI	N	23	INX	H	58	MOV	E,B
CD	CALL	NN	33	INX	SP	59	MOV	E,C
DC	CC	NN	DA	JC	NN	5A	MOV	E,D
FC	CM	NN	FA	JM	NN	5B	MOV	E,E
2F	CMA		C3	JMP	NN	5C	MOV	E,H
3F	CMC		D2	JNC	NN	5D	MOV	E,L
BF	CMP	A	C2	JNZ	NN	5E	MOV	E,M
B8	CMP	B	F2	JP	NN	67	MOV	H,A
B9	CMP	C	EA	JPE	NN	60	MOV	H,B
BA	CMP	D	E2	JPO	NN	61	MOV	H,C
BB	CMP	E	CA	JZ	NN	62	MOV	H,D
BC	CMP	H	3A	LDA	NN	63	MOV	H,E
BD	CMP	L	0A	LDAX	B	64	MOV	H,H
BE	CMP	M	1A	LDAX	D	65	MOV	H,L
D4	CNC	NN	2A	LHLD	NN	66	MOV	H,M
C4	CNZ	NN	01	LXI	B,NN	6F	MOV	L,A
F4	CP	NN	11	LXI	D,NN	68	MOV	L,B
EC	CPE	NN	21	LXI	H,NN	69	MOV	L, C
FE	CPI	N	31	LXI	SP,NN	6A	MOV	L,D
E4	CPO	NN	7F	MOV	A, A	6B	MOV	L,E
CC	CZ	NN	78	MOV	A,B	6C	MOV	L,H
27	DAA		79	MOV	A, C	6D	MOV	L,L
09	DAD	B	7A	MOV	A,D	6E	MOV	L,M
19	DAD	D	7B	MOV	A, E	77	MOV	M,A
29	DAD	H	7C	MOV	A, H	70	MOV	M,B
39	DAD	SP	7D	MOV	A,L	71	MOV	M, C
72	MOV	M,D	E5	PUSH	H	9D	SBB	L
73	MOV	M,E	F5	PUSH	PSW	9E	SBB	M

74	MOV	M, H	17	RAL		DE	SBI	N
75	MOV	M,L	1F	RAR		22	SHLD	NN
3E	MVI	A,N	D8	RC		30	SIM	
06	MVI	B,N	C9	RET		F9	SPHL	
0E	MVI	C,N	20	RIM		32	STA	NN
16	MVI	D,N	07	RLC		02	STAX	B
1E	MVI	E,N	F8	RM		12	STAX	D
26	MVI	H,NN	D0	RNC		37	STC	
2E	MVI	L,N	C0	RNZ		97	SUB	A
36	MVI	M,N	F0	RP		90	SUB	B
00	NOP		E8	RPE		91	SUB	C
B7	ORA	A	E0	RPO		92	SUB	D
B0	ORA	B	0F	RRC		93	SUB	E
B1	ORA	C	C7	RST	0	94	SUB	H
B2	ORA	D	CF	RST	1	95	SUB	L
B3	ORA	E	D7	RST	2	96	SUB	M
B4	ORA	H	DF	RST	3	D6	SUI	N
B5	ORA	L	E7	RST	4	EB	XCHG	
B6	ORA	M	EF	RST	5	AF	XRA	A
F6	ORI	N	F7	RST	6	A8	XRA	B
D3	OUT	N	FF	RST	7	A9	XRA	C
E9	PCHL		C8	RZ		AA	XRA	D
C1	POP	B	9F	SBB	A	AB	XRA	E
D1	POP	D	98	SBB	B	AC	XRA	H
E1	POP	H	99	SBB	C	AD	XRA	L
F1	POP	PSW	9A	SBB	D	AE	XRA	M
C5	PUSH	B	9B	SBB	E	EE	XRA	N
D5	PUSH	D	9 C	SBB	H	E3	XTHL	

