KABARAK

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COMP 122

COURSE TITLE: DISCRETE STRUCTURE
STREAM: Y1S2
DAY: MONDAY
TIME:
8.30-10.30 A.M.

DATE:
15/12/2008

INSTRUCTIONS:

Note: - Part-A is compulsory, has 30 marks and from Part-B, You can attempt any two questions. Each question has 20 marks.

PLEASE TURN OVER

Part-A

QUESTION 1

a) Rewrite the following statements using set notation:
i) the element 1 is not a member of A
ii) A is a subset of C
iii) F contains all the elements of G.

Marks 1.5
b) State the following:
i) The principle of extension and
ii) The principle of abstraction. Mark 1
c) List the elements of the following sets; here $N=\{1,2,3 \ldots \ldots\}$.
i) $\quad A=\{x: x \in N, 3<x<12\}$
ii) $\quad B=\{x: x \in N, x$ is even, $x<15\}$
iii) $\quad C=\{x: x \in N, 4+x=3\}$
iv) $A=\left\{x: x \in N, x^{2}+1=10\right\}$
v) $\quad B=\{x: x \in N, x$ is odd, $-5<x<5\}$

Marks 2.5
d) Let $A=\{x: 3 x=6\}$. Explain does $A=2$?

Marks 2
e) Which of these sets are equal: $\{\mathrm{r}, \mathrm{s}, \mathrm{t}\},\{\mathrm{t}, \mathrm{s}, \mathrm{r}\},\{\mathrm{s}, \mathrm{r}, \mathrm{t}\},\{\mathrm{t}, \mathrm{r}, \mathrm{s}\}$?

Marks 2
f) Consider the sets:
$\{4,2\},\left\{x: x^{2}-6 x+8=0\right\},\{x: x \in N, x$ is even, $1<x<5\}$.
Which of them are equal to $B=\{2,4\}$?
Marks 2
g) Describe a situation where the universal set U may be empty. Marks 3
h) Explain the difference between $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{A} \subset \mathrm{B}$.

Marks 2
i) Show that $A=\{2,3,4,5\}$ is not a subset of $B=\{x: x \in N, x$ is even $\}$.

Marks 2
j) Suppose $A=\{1,2\}$. Find
i) A^{2}
ii) $\mathrm{A}^{3} \quad$ Marks 2
k) A class consists of seven men and five women. Find the number m of committees of five that can be selected from the class.

Marks 2

1) Verify that the proposition $p \vee \neg(p \wedge q)$ is a tautology.

Marks 4
m) Determine the power set $P(A)$ of $A=\{a, b, c, d\}$

Question 2

a) Consider the following sets:
I. $X=\{x: x$ is an integer, $x>1\}$
II. $\mathrm{Y}=\{\mathrm{y}: \mathrm{y}$ is an positive integer, divisible by 2$\}$
III. $Z=\{z: ~ z$ is an even number, greater than 2$\}$

Which of them are subset of $w=\{2,4,6 \ldots \ldots$.$\} ?$
Marks 3
b) Suppose that $A=\{1,2,3,4\}, B=\{2,3,4,5,6,7\}, C=\{3,4\}, D=\{4,5,6\}$ and $E=\{3\}$

1. which of the five sets can equal X if $X \subseteq A$ and $X \subseteq B$?
2. which of the five sets can equal to X if $\mathrm{X} \not \subset \mathrm{D}$ and $\mathrm{X} \subseteq \mathrm{C}$?
3. find the smallest set M which contains all five sets.
4. Find the largest set N which is a subset of all the five set.

Marks 4
c) Draw a venn diagram of sets A, B, C where A and B have elements in common, B and

C have elements in common, but A and C are disjoint.
Marks 2
d) Draw a venn diagram of sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ where $\mathrm{A} \subseteq \mathrm{B}$, sets A and C are disjoint, but B and

C have elements in common.
Marks 2
e) Suppose $\mathrm{U}=\{1,2,3, \ldots \ldots \ldots 8,9\}, \mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,4,6,8\}$, and $\mathrm{C}=\{3,4,5,6\}$. Find (i) $\quad(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}$ and \quad (ii) $\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C}) \quad$ Marks 4
f) Determine which of the following sets are finite.
(i) $\mathrm{A}=\{$ seasons in the year $\}$
(ii) $\mathrm{B}=\{$ state in the union $\}$
(iii) $\mathrm{C}=\{+\mathrm{ve}$ integers less than 1$\}$

Marks 3
g) Let R be the relation on $\mathrm{A}=\{1,2,3,4\}$ defined by:
$R=\{(1,1),(3,1),(3,4),(4,2),(4,3)\}$
Find the composition $\mathrm{R}^{2}=\mathrm{Ro} \mathrm{R}$ from the relation
Marks 2

Question 3

a) Suppose $U=\{1,2,3, \ldots \ldots \ldots 8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.

Find
(i) A^{c}
(ii) B^{c}
(iii) $A \backslash B$
(iv) $\mathrm{B} \backslash \mathrm{B}$
b) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.

Find (i) $\quad(A \cap B) \backslash C$
(ii) $(\mathrm{A} \backslash \mathrm{B})^{\mathrm{c}} \quad$ Marks 2
c) Prove the commutative laws: (i) $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ and (ii) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$

Marks 2
d) Write the dual of each set equation:
(i) $\quad(A \cup B \cup C)^{c}=(A \cup C)^{c} \cap(A \cup B)^{c}$
(ii) $(\mathrm{A} \cup \mathrm{U}) \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$

Marks 2
e) Prove the absorption laws: $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$

Marks 4
f) Translate each of the following statements in to a venn diagram.
(i) all students are lazy
(ii) some students are lazy.

Marks 2
g) Given $A=\left(\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right)$ and $B=\left(\begin{array}{cc}5 & 0 \\ -6 & 7\end{array}\right)$. Find $(A B)^{T}$

Marks 2
h) Find the number of distinct permutations that can be formed from all the letters of each word
I. THEM; and
II. THAT

Marks 2

Question 4

a) Find the number of elements in the finite set:
(i) $\mathrm{A}=\{2,4,6,8,10\}$
(ii) $\mathrm{B}=\left\{\mathrm{x}: \mathrm{x}^{2}=4\right\}$
(iii) $\mathrm{C}=\{\mathrm{x}: \mathrm{x}>\mathrm{x}+2\}$

Marks 3
b) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result were:
45 had taken sociology
38 had taken anthropology

21 had taken history
18 had taken sociology and anthropology
9 had taken sociology and history
5 had taken history and anthropology and
23 had taken no courses in any of the area.
(i) Draw a venn diagram that will show the results of the survey.

Marks 4
(ii) Determine the number k of students who had taken classes in exactly (1) one of the areas, and (2) two of the areas.

Marks 2
c) Let $A=\{1,2,3\}$ and $B=\{a, b\}$. find $A \times B$

Marks 2
d) Given $A=\{1,2\}, B=\{x, y, z\}$, and $C=\{3,4\}$

Find $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$ and $\mathrm{n}(\mathrm{A} \times \mathrm{B} \times \mathrm{C})$ by the help of tree diagram.
Marks 3
e) Let R be the relation from $A=\{1,2,3,4\}$ to $B=\{x, y, z\}$ defined by
$\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$
(i) determine the domain and range of R
(ii) find the inverse relation R^{-1} of R .

Marks 2
f) Let R be the relation on $\mathrm{A}=\{1,2,3,4,5\}$ described by the directed graph in the fig. write R as a set of ordered pairs.

4
5
g) Consider a relation S from $X=\{1,2,3\}$ to $Y=\{a, b, c, d\}$ whose matrix representation is

$$
M=2\left(\begin{array}{cccc}
a & b & c & d \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

Question 5

a) Describe the " arrow diagram" of a relation R from a finite set A to a finite set B. Illustrate using the relation R from set $A=\{1,2,3,4\}$ to set $B=\{x, y, z\}$ defined by $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$
b) Consider the following three relations on the set $\mathrm{A}=\{1,2,3\}$:
$R=\{(1,1),(1,2),(1,3),(3,3)\}$
$\mathrm{S}=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$
$\mathrm{T}=\mathrm{AXA}$
(i) Determine which of the relations are reflective.
(ii) Determine which of the relations are symmetric.
(iii) Determine which of the relations are transitive.

Marks 3
c) Functions f: A $\rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$

Find the composition function hog

d) Prove the associative law: $(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} \equiv \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$

Marks 4
e) Use a K-map to find the prime implicants and minimal form for each of the following complete sum-of-products Boolean expressions.
$\mathrm{E}_{1}=\mathrm{xyz}+\mathrm{xyz}^{\prime}+\mathrm{xy}^{\prime} \mathrm{z}+\mathrm{x}^{\prime} \mathrm{yz}+\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}$
Marks 3
f) Design a three-input minimal AND-OR circuit L that will have the following truth table:
$\mathrm{T}=[\mathrm{A}=00001111, \mathrm{~B}=00110011, \mathrm{C}=01010101, \mathrm{~L}=11001101$
Marks 3
g) A student is to answer eight out of ten questions on an exam. Find the number m of ways that the student can choose the eight questions.

Marks 2

