KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: COMP 122

COURSE TITLE: DISCRETE STRUCTURE

- STREAM: Y1S2
- DAY: MONDAY
- TIME: 8.30 10.30 A.M.
- DATE: 15/12/2008

INSTRUCTIONS:

Note: - Part-A is compulsory, has 30 marks and from Part-B, You can attempt any two questions. Each question has 20 marks.

PLEASE TURN OVER

Part-A

QUESTION 1

a) Rewrite the following statements using set notation:				
	i)	the element 1 is not a member of A		
	ii)	A is a subset of C		
	iii)	F contains all the elements of G.	Marks 1.5	
b) State the following:				
	i)	The principle of extension and		
	ii)	The principle of abstraction.	Mark 1	
c) List the elements of the following sets; here $N = \{1, 2, 3, \dots\}$.				
	i)	$A = \{ x: x \in N, 3 < x < 12 \}$		
	ii)	$B = \{ x: x \in N, x \text{ is even, } x < 15 \}$		
	iii)	$C = \{ x: x \in N, 4+x = 3 \}$		
	iv)	A = { x: x \in N, x ² + 1 = 10}		
	v)	B = { x: $x \in N$, x is odd, $-5 < x < 5$ }	Marks 2.5	
d) Let $A = \{ x: 3x = 6 \}$. Explain does $A = 2$?			Marks 2	
e) Which of these sets are equal: $\{r,s,t\}$, $\{t,s,r\}$, $\{s,r,t\}$, $\{t,r,s\}$? Marks 2				
f) Consider the sets:				
{4,2}, {x: $x^2 - 6x + 8 = 0$ }, {x: $x \in N$, x is even, $1 < x < 5$ }.				
Which of them are equal to $B = \{2,4\}$? Marks 2				
g) Describe a situation where the universal set U may be empty. Mark			Marks 3	
h) Explain the difference between $A \subseteq B$ and $A \subset B$. Matrix				
i) Show that $A = \{2,3,4,5\}$ is not a subset of $B = \{x: x \in N, x \text{ is even}\}$. Marks 2				
j) Suppose $A = \{1,2\}$. Find				
	i)	A^2		
	ii)	A ³	Marks 2	
k) A class consists of seven men and five women. Find the number m of committees of				
five	that ca	in be selected from the class.	Marks 2	
l) Verify that the proposition $p \lor \neg (p \land q)$ is a tautology. Marks 4				
m) l	m) Determine the power set $P(A)$ of $A=\{a,b,c,d\}$ Marks 4			

Question 2

a) Consider the following sets:

- I. $X = \{x: x \text{ is an integer, } x > 1\}$
- II. $Y = \{y: y \text{ is an positive integer, divisible by } 2\}$
- III. $Z = \{z: z \text{ is an even number , greater than } 2\}$

Which of them are subset of $w = \{2,4,6,\ldots,\}$?

b) Suppose that $A = \{1, 2, 3, 4\}, B = \{2, 3, 4, 5, 6, 7\}, C = \{3, 4\}, D = \{4, 5, 6\} and E = \{3\}$

Marks 3

- 1. which of the five sets can equal X if $X \subseteq A$ and $X \subseteq B$?
- 2. which of the five sets can equal to X if $X \not\subset D$ and $X \subseteq C$?
- 3. find the smallest set M which contains all five sets.
- 4. Find the largest set N which is a subset of all the five set. Marks 4

c) Draw a venn diagram of sets A, B, C where A and B have elements in common, B and

C have elements in common, but A and C are disjoint. Marks 2

d) Draw a venn diagram of sets A, B, C where $A \subseteq B$, sets A and C are disjoint, but B and

C have elements in common. Marks 2

e) Suppose U= $\{1,2,3,\ldots,8,9\}$, A= $\{1,2,3,4\}$, B= $\{2,4,6,8\}$, and C= $\{3,4,5,6\}$. Find

(i)
$$(A \cup B) \cup C$$
 and (ii) $A \cup (B \cup C)$ Marks 4

f) Determine which of the following sets are finite.

- (i) $A = \{ seasons in the year \}$
- (ii) $B = \{ \text{state in the union} \}$

(iii) C={+ve integers less than 1} Marks 3

g) Let R be the relation on $A=\{1,2,3,4\}$ defined by:

 $\mathbf{R} = \{(1,1), (3,1), (3,4), (4,2), (4,3)\}$

Find the composition $R^2 = Ro R$ from the relation Marks 2

Question 3

a) Suppose U= $\{1,2,3,...,8,9\}$, A= $\{1,2,3,4\}$, B= $\{2,4,6,8\}$, and C= $\{3,4,5,6\}$. Find (i) A^c (ii) B^c (iii) A\B (iv) B\B Marks 4 b) Suppose U= $\{1,2,3,\ldots,8,9\}$, A= $\{1,2,3,4\}$, B= $\{2,4,6,8\}$, and C= $\{3,4,5,6\}$. Find (i) $(A \cap B) \setminus C$ (ii) $(A \setminus B)^c$ Marks 2

c) Prove the commutative laws: (i) $A \cup B = B \cup A$ and (ii) $A \cap B = B \cap A$

Marks 2

d) Write the dual of each set equation:

(i)
$$(A \cup B \cup C)^{c} = (A \cup C)^{c} \cap (A \cup B)^{c}$$

(ii) $(A \cup U) \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Marks 2

e) Prove the absorption laws: $A \cup (A \cap B) = A$ Marks 4

f) Translate each of the following statements in to a venn diagram.

(i)	all students are lazy	
(ii)	some students are lazy.	Marks 2

g) Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 5 & 0 \\ -6 & 7 \end{pmatrix}$. Find $(AB)^T$ Marks 2

h) Find the number of distinct permutations that can be formed from all the letters of each word

II. THAT Marks 2

Question 4

a) Find the number of elements in the finite set:

(i)
$$A=\{2,4,6,8,10\}$$

(ii) $B=\{x: x^2 = 4\}$
(iii) $C=\{x: x > x + 2\}$ Marks 3

b) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result were:

45 had taken sociology

38 had taken anthropology

21 had taken history

18 had taken sociology and anthropology

9 had taken sociology and history

5 had taken history and anthropology and

23 had taken no courses in any of the area.

(i) Draw a venn diagram that will show the results of the survey.Marks 4(ii) Determine the number k of students who had taken classes in exactly (1) one of the
areas, and (2) two of the areas.Marks 2(c) Let A = $\{1,2,3\}$ and B = $\{a,b\}$. find A×BMarks 2(d) Given A = $\{1,2\}$, B = $\{x,y,z\}$, and C = $\{3,4\}$ Marks 3Find A×B×C and n(A×B×C) by the help of tree diagram.Marks 3(e) Let R be the relation from A = $\{1,2,3,4\}$ to B = $\{x,y,z\}$ defined byMarks 2(i) determine the domain and range of RMarks 2(ii) find the inverse relation R⁻¹ of R.Marks 2

f) Let R be the relation on $A = \{1,2,3,4,5\}$ described by the directed graph in the fig. write R as a set of ordered pairs. Marks 2

g) Consider a relation S from $X = \{1,2,3\}$ to $Y = \{a,b,c,d\}$ whose matrix representation is

a b c d

$$M = 2 \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$
Marks 2

<u>Question 5</u>

a) Describe the "arrow diagram" of a relation R from a finite set A to a finite set B. Illustrate using the relation R from set A ={1,2,3,4} to set B = {x,y,z}defined by $R = \{(1,y),(1,z),(3,y),(4,x),(4,z)\}$ Marks 2

b) Consider the following three relations on the set $A = \{1,2,3\}$:

$$\mathbf{R} = \{(1,1), (1,2), (1,3), (3,3)\}$$

$$\mathbf{S} = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$$

$$T = AXA$$

- (i) Determine which of the relations are reflective.
- (ii) Determine which of the relations are symmetric.
- (iii) Determine which of the relations are transitive. Marks 3
- c) Functions f: $A \rightarrow B$, g: $B \rightarrow C$

Find the composition function h o g Marks 3

d) Prove the associative law: $(p \land q) \land r \equiv p \land (q \land r)$ Marks 4

e) Use a K-map to find the prime implicants and minimal form for each of the following complete sum-of-products Boolean expressions.

 $E_1 = xyz + xyz' + xy'z + x'yz + x'y'z$ Marks 3

f) Design a three-input minimal AND-OR circuit L that will have the following truth table:

T= [A=00001111, B= 00110011, C= 01010101, L= 11001101

Marks 3

g) A student is to answer eight out of ten questions on an exam. Find the number m of ways that the student can choose the eight questions.Marks 2