KABARAK


## COURSE CODE: COMP 122

COURSE TITLE: DISCRETE STRUCTURE
STREAM:
DAY:
FRIDAY
TIME:
9.00-11.00 A.M.

DATE:
06/08/2010

## INSTRUCTIONS:

Note: - Part-A is compulsory, have $\mathbf{3 0}$ marks and from Part-B, You can attempt any two questions. Each question has $\mathbf{2 0}$ marks.

## Part-A

## Question One (Marks 30) Compulsory

a) Rewrite the following statements using set notation:
(i) the element 1 is not a member of A
(ii) A is a subset of B

Marks 2
b) State the following:
(i) The principle of extension and
(ii) The principle of abstraction.

Marks 2
c) List the elements of the following sets; here $N=\{1,2,3 \ldots \ldots\}$.
(i) $A=\{x: x \in N, 6<x<10\}$
(ii) $\mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, \mathrm{x}$ is even, $\mathrm{x}<11\}$
(iii) $\mathrm{C}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, 4+\mathrm{x}=3\}$
(iv) $\mathrm{A}=\left\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, \mathrm{x}^{2}+2=11\right\}$

Marks 4
d) Let $X=\{x: 3 x=6\}$.Explain whether $X=2$ ? Marks 2
e) Which of these sets are equal: $\{\mathrm{r}, \mathrm{s}, \mathrm{t}\},\{\mathrm{t}, \mathrm{s}, \mathrm{r}\},\{\mathrm{s}, \mathrm{r}, \mathrm{t}\},\{\mathrm{t}, \mathrm{r}, \mathrm{s}\}$ ? Marks 2
f) Consider the sets:
$\{4,2\},\left\{x: x^{2}-6 x+8=0\right\},\{x: x \in N, x$ is even, $1<x<5\}$.
Which of them are equal to $B=\{2,4\}$ ?
Marks 2
g) Draw the K-Map of the following expression. $Z=f(A, B, C)=\bar{A} \bar{B} \bar{C}+\bar{A} B+A B \bar{C}+A C$

Marks 2
h) Explain the difference between $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{A} \subset \mathrm{B}$.

Marks 2
i) Show that $A=\{2,3,4,5\}$ is not a subset of $B=\{x: x \in N, x$ is even $\}$. Marks 2
j) Suppose $A=\{1,2\}$. Find
(i) $\mathrm{A}^{2}$
(ii) $\mathrm{A}^{4}$

Marks 2
k) A class consists of seven men and five women. Find the number $m$ of committees of five that can be selected from the class.

Marks 2

1) Determine the power set $\mathrm{P}(\mathrm{A})$ of $\mathrm{A}=\{1,2,3,4\}$

Marks 2
m) Find the truth table of $\sim p \wedge q$

Marks 2
n) Draw the complete bipartite graphs $\mathrm{K}_{2,3}$

Marks 2

## Part-B

## Question Two (Marks 20)

a) Consider the following sets:
(I) $\mathrm{X}=\{\mathrm{x}: \mathrm{x}$ is an integer, $\mathrm{x}>1\}$
(II) $\quad \mathrm{Y}=\{\mathrm{y}: \mathrm{y}$ is an positive integer, divisible by 2$\}$

Which of them are subset of $w=\{2,4,6 \ldots \ldots$.$\} ?$
Marks 2
b) Suppose that $A=\{1,2,3,4\}, B=\{2,3,4,5,6,7\}, C=\{3,4\}, D=\{4,5,6\}$ and $E=\{3\}$
(i) Which of the five sets can equal X if $\mathrm{X} \subseteq \mathrm{A}$ and $\mathrm{X} \subseteq \mathrm{B}$ ?
(ii) Which of the five sets can equal to X if $\mathrm{X} \not \subset \mathrm{D}$ and $\mathrm{X} \subseteq \mathrm{C}$ ?
(iii) Find the smallest set M which contains all five sets.
(iv) Find the largest set N which is a subset of all the five set.

Marks 4
c) Draw a venn diagram of sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ where A and B have elements in common, B and C have elements in common, but A and C are disjoint.

Marks 2
d) Suppose $U=\{1,2,3, \ldots \ldots \ldots 8,9\}, A=\{1,2,3,4,5\}, B=\{2,4,6,7,8\}$, and $C=\{3,4,5,6,9\}$. Find
(i) $(A \cup B) \cup C$ and
(ii) $\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$
Marks 4
e) Determine which of the following sets are finite.
(i) $\mathrm{B}=\{$ state in the union $\}$
(ii) $\mathrm{C}=\{+$ ve integers less than 1$\}$

Marks 2
f) A student is to answer seven out of ten questions on an exam. Find the number $m$ of ways that the student can choose the eight questions.

Marks 2
g) Verify that the proposition $p \vee \neg(p \wedge q)$ is a tautology.

Marks 2
h) Prove the associative law: $(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} \equiv \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$

Marks 2

## Question Three (Marks 20)

a) Suppose $U=\{1,2,3, \ldots \ldots \ldots 8,9\}, A=\{1,2,3,4,5\}, B=\{4,6,8\}$, and $C=\{3,4,5,6\}$.

Find
(i) $\mathrm{A}^{\mathrm{c}}$
(ii) $\mathrm{A} \backslash \mathrm{B}$
(iii) $\mathrm{B} \backslash \mathrm{B} \quad$ Marks 4
b) Suppose $U=\{1,2,3, \ldots \ldots \ldots 8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.

Find (i) $\quad(A \cap B) \backslash C$
(ii) $(\mathrm{A} \backslash \mathrm{B})^{\mathrm{c}} \quad$ Marks 2
c) Prove the commutative laws: (i) $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ and (ii) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
d) Consider the function f from $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ into $\mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}\}$ defined by figure.
(i) find the image of each element of A ;
(ii) find the image of $f$; and
(iii) find the graph of f

Marks 3

e) Draw all trees with five vertices

Marks 5
f) Find the adjacency matrix $A$ of the graph $G$ in figure.


Marks 2
g) Translate each of the following statements in to a venn diagram.
a. all students are lazy
b. some students are lazy.

Marks 2

## Question Four (Marks 20)

a) Find the number of elements in the finite set:
(i) $\mathrm{A}=\{2,4,6,8,10\}$
(ii) $B=\left\{x: x^{2}=4\right\}$

Mark 1
b) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result were:
43 had taken sociology
36 had taken anthropology
16 had taken history
18 had taken sociology and anthropology
9 had taken sociology and history
5 had taken history and anthropology and 4 had taken all the three subjects.
(i) Draw a venn diagram that will show the results of the survey.
(ii) Determine the number k of students who had taken classes in exactly (1) one of the areas, and (2) two of the areas.
c) Let $A=\{1,2,3\}$ and $B=\{a, b\}$. find $A \times B$

Marks 2
d) Given $\mathrm{A}=\{1,2\}, \mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$, and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$

Find $A \times B \times C$ and $n(A \times B \times C)$ by the help of tree diagram.
Marks 3
e) Let $R$ be the relation from $A=\{1,2,3,4\}$ to $B=\{x, y, z\}$ defined by
$\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$
(i) determine the domain and range of R
(ii) find the inverse relation $\mathrm{R}^{-1}$ of R .

Marks 2
f) Let R be the relation on $\mathrm{A}=\{1,2,3,4,5\}$ described by the directed graph in the fig. write R as a set of ordered pairs.

g) Draw the graph $G$ whose adjacency matrix $A$ is
$\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$
h) Compute $\binom{8}{5}$

Marks 2

## Question Five (Marks 20)

a) Describe the " arrow diagram" of a relation R from a finite set A to a finite set B . Illustrate using the relation $R$ from set $A=\{1,2,3,4\}$ to set $B=\{x, y, z\}$ defined by $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$
b) Consider the following three relations on the set $\mathrm{A}=\{1,2,3\}$ :
$R=\{(1,1),(1,2),(1,3),(3,3)\}$
$\mathrm{S}=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$
T = AXA
(i) Determine which of the relations are reflective.
(ii) Determine which of the relations are symmetric.
(iii) Determine which of the relations are transitive.

Marks 3
c) Functions f: $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$

Find the composition function fog

d) Prove the associative law: $(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} \equiv \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$
e) Use a K-map to find the prime implicants and minimal form for each of the following complete sum-of-products Boolean expressions.
$\mathrm{E}_{1}=\mathrm{xyz}+\mathrm{xyz}$ + $\mathrm{xy}{ }^{\prime} \mathrm{z}+\mathrm{x}$ ' $\mathrm{yz}+\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z} \quad$ Marks 3
f) Design a three-input minimal AND-OR circuit $L$ that will have the following truth table: $\mathrm{T}=[\mathrm{A}=00001111, \mathrm{~B}=00110011, \mathrm{C}=01010101, \mathrm{~L}=11001101$

Marks 3
g)Simplify $\frac{(n+1)!}{(n-1)!}$

Marks 4

