STREAM:
DAY:
TIME:
DATE:
09/12/2009

INSTRUCTIONS:

- Answer ALL questions in SECTION A and ANY TWO in SECTION B.
- Indicate question numbers clearly at the top of each page.
- Observe further instructions on the answer booklet.

Part-A

QUESTION 1

a) Rewrite the following statements using set notation:
(i) the element 1 is not a member of A
(ii) A is a subset of B

Marks 2
b) State the following:
(i) The principle of extension and
(ii) The principle of abstraction.

Marks 2
c) List the elements of the following sets; here $\mathrm{N}=\{1,2,3 \ldots \ldots$.$\} .$
(i) $A=\{x: x \in N, 6<x<12\}$
(ii) $\mathrm{B}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, \mathrm{x}$ is even, $\mathrm{x}<11\}$
(iii) $\mathrm{C}=\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, 4+\mathrm{x}=3\}$
(iv) $A=\left\{x: x \in N, x^{2}+1=10\right\}$
(v) $B=\{x: x \in N, x$ is odd, $-5<x<6\}$

Marks 5
d) Let $X=\{x: 3 x=6\}$.Explain does $X=2$? Marks 2
e) Which of these sets are equal: $\{\mathrm{r}, \mathrm{s}, \mathrm{t}\},\{\mathrm{t}, \mathrm{s}, \mathrm{r}\},\{\mathrm{s}, \mathrm{r}, \mathrm{t}\},\{\mathrm{t}, \mathrm{r}, \mathrm{s}\}$? Marks 2
f) Consider the sets:
$\{4,2\},\left\{x: x^{2}-6 x+8=0\right\},\{x: x \in N, x$ is even, $1<x<5\}$.
Which of them are equal to $B=\{2,4\}$?
Marks 2
g) Draw the K-Map of the following expression. $Z=f(A, B, C)=\bar{A} \bar{B} \bar{C}+\bar{A} B+A B \bar{C}+A C$ Marks 3
h) Explain the difference between $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{A} \subset \mathrm{B}$.

Marks 2
i) Show that $A=\{2,3,4,5\}$ is not a subset of $B=\{x: x \in N, x$ is even $\}$. Marks 2
j) Suppose $A=\{1,2\}$. Find
(i) A^{2}
(ii) A^{3}

Marks 2
k) A class consists of seven men and five women. Find the number m of committees of five that can be selected from the class.

1) Determine the power set $P(A)$ of $A=\{a, b, c, d, e\}$

Marks 4

Question 2

a) Consider the following sets:
(I) $\mathrm{X}=\{\mathrm{x}: \mathrm{x}$ is an integer, $\mathrm{x}>1\}$
(II) $\quad \mathrm{Y}=\{\mathrm{y}: \mathrm{y}$ is an positive integer, divisible by 2$\}$
(III) $\mathrm{Z}=\{\mathrm{z}: \mathrm{z}$ is an even number, greater than 2$\}$

Which of them are subset of $w=\{2,4,6 \ldots \ldots$.$\} ?$
Marks 3
b) Suppose that $A=\{1,2,3,4\}, B=\{2,3,4,5,6,7\}, C=\{3,4\}, D=\{4,5,6\}$ and $E=\{3\}$
(i) Which of the five sets can equal X if $\mathrm{X} \subseteq \mathrm{A}$ and $\mathrm{X} \subseteq \mathrm{B}$?
(ii) Which of the five sets can equal to X if $\mathrm{X} \not \subset \mathrm{D}$ and $\mathrm{X} \subseteq \mathrm{C}$?
(iii) Find the smallest set M which contains all five sets.
(iv) Find the largest set N which is a subset of all the five set.

Marks 4
c) Draw a venn diagram of sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ where A and B have elements in common, B and C have elements in common, but A and C are disjoint.

Marks 2
d) Draw a venn diagram of sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ where $\mathrm{A} \subseteq \mathrm{B}$, sets A and C are disjoint, but B and
C have elements in common.
Marks 2
e) Suppose $U=\{1,2,3, \ldots \ldots \ldots 8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$. Find
(i) $(A \cup B) \cup C$ and
(ii) $\quad \mathrm{A} \cup(\mathrm{B} \cup \mathrm{C}) \quad$ Marks 4
f) Determine which of the following sets are finite.
(i) $\mathrm{A}=\{$ seasons in the year $\}$
(ii) $\mathrm{B}=\{$ state in the union $\}$
(iii) $\mathrm{C}=\{+$ ve integers less than 1$\}$

Marks 3
g) Let R be the relation on $\mathrm{A}=\{1,2,3,4\}$ defined by:
$R=\{(1,1),(3,1),(3,4),(4,2),(4,3)\}$
Find the composition $\mathrm{R}^{2}=\mathrm{R} o \mathrm{R}$ from the relation Marks 2

QUESTION 3

a) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.
(i) Find A^{c}
(ii) $\mathrm{A} \backslash \mathrm{B}$
(iii) $\mathrm{B} \backslash \mathrm{B} \quad$ Marks 4
b) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.

Find (i) $\quad(A \cap B) \backslash C$
(ii) $(A \backslash B)^{c}$

Marks 2
c) Prove the commutative laws: (i) $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ and (ii) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
d) Write the dual of each set equation:
(i) $\quad(A \cup B \cup C)^{c}=(A \cup C)^{c} \cap(A \cup B)^{c}$
(ii) $(\mathrm{A} \cup \mathrm{U}) \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$
e) Prove the absorption laws: $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$
f) Translate each of the following statements in to a venn diagram.
(i) all students are lazy
(ii) some students are lazy.

Marks 2
g) Given $A=\left(\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right)$ and $B=\left(\begin{array}{cc}5 & 0 \\ -6 & 7\end{array}\right)$. Find $(A B)^{T}$

Marks 2
h) Consider the expression $Z=f(A, B)=\bar{A} \bar{B}+A \bar{B}+\bar{A} B$.Plot the Karnaugh map and find the minimal form of Z .

Marks 2

QUESTION 4

a) Find the number of elements in the finite set:
(i) $\mathrm{A}=\{2,4,6,8,10\}$
(ii) $\mathrm{B}=\left\{\mathrm{x}: \mathrm{x}^{2}=4\right\}$
(iii) $\mathrm{C}=\{\mathrm{x}: \mathrm{x}>\mathrm{x}+2\}$

Marks 3
b) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result were:
45 had taken sociology
38 had taken anthropology
21 had taken history
18 had taken sociology and anthropology
9 had taken sociology and history
5 had taken history and anthropology and
23 had taken no courses in any of the area.
(i) Draw a venn diagram that will show the results of the survey.

Marks 4
(ii) Determine the number k of students who had taken classes in exactly (1) one of the areas, and (2) two of the areas.
c) Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}\}$. find $\mathrm{A} \times \mathrm{B}$
d) Given $A=\{1,2\}, B=\{x, y, z\}$, and $C=\{3,4\}$

Find $A \times B \times C$ and $n(A \times B \times C)$ by the help of tree diagram.
Marks 3
e) Let R be the relation from $A=\{1,2,3,4\}$ to $B=\{x, y, z\}$ defined by $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$
(i) Determine the domain and range of R
(ii) Find the inverse relation R^{-1} of R .
f) Let R be the relation on $\mathrm{A}=\{1,2,3,4,5\}$ described by the directed graph in the fig. write R as a set of ordered pairs.

Marks 2

g) Draw the k-map of the expression: $Z=f(A, B)=A \bar{B}+A B$

Marks 2

QUESTION 5

a) Describe the "arrow diagram" of a relation R from a finite set A to a finite set B .

Illustrate using the relation R from set $A=\{1,2,3,4\}$ to set $B=\{x, y, z\}$ defined by

$$
\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}
$$

Marks 2
b) Consider the following three relations on the set $\mathrm{A}=\{1,2,3\}$:

$$
\begin{aligned}
& \mathrm{R}=\{(1,1),(1,2),(1,3),(3,3)\} \\
& \mathrm{S}=\{(1,1),(1,2),(2,1),(2,2),(3,3)\} \\
& \mathrm{T}=\text { AXA }
\end{aligned}
$$

(i) Determine which of the relations are reflective.
(ii) Determine which of the relations are symmetric.
(iii) Determine which of the relations are transitive.

Marks 3
c) Functions f: A \rightarrow B, g: B \rightarrow C

Find the composition function h og g
Marks 3

d) Prove the associative law: $(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} \equiv \mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$
e) Use a K-map to find the prime implicants and minimal form for each of the following complete sum-of-products Boolean expressions.
$\mathrm{E}_{1}=\mathrm{xyz}+\mathrm{xyz}$ ' $+\mathrm{xy} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{x}^{\prime} \mathrm{yz}+\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z} \quad$ Marks 3
f) Design a three-input minimal AND-OR circuit L that will have the following truth table:
$T=[\mathrm{A}=00001111, \mathrm{~B}=00110011, \mathrm{C}=01010101, \mathrm{~L}=11001101 \quad$ Marks 3
g) Using algebraic method, simplify $Z=A \bar{B}+A B$

Marks 2

