KABARAK

UNIVERSITY

EXAMINATIONS 2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 122

COURSE TITLE: DISCRETE STRUCTURE

STREAM: Y1S2

DAY: WEDNESDAY

TIME: 9.00 - 11.00 A.M.

DATE: 09/12/2009

INSTRUCTIONS:

- Answer ALL questions in <u>SECTION A</u> and ANY TWO in <u>SECTION B</u>.
- Indicate question numbers clearly at the top of each page.
- Observe further instructions on the answer booklet.

Part-A

QUESTION 1

- a) Rewrite the following statements using set notation:
 - (i) the element 1 is not a member of A
 - (ii) A is a subset of B

Marks 2

- b) State the following:
 - (i) The principle of extension and
 - (ii) The principle of abstraction.

Marks 2

- c) List the elements of the following sets; here $N=\{1,2,3....\}$.
 - (i) $A = \{ x: x \in \mathbb{N}, 6 < x < 12 \}$
 - (ii) $B = \{ x: x \in \mathbb{N}, x \text{ is even, } x < 11 \}$
 - (iii) $C = \{ x: x \in \mathbb{N}, 4+x = 3 \}$
 - (iv) $A = \{ x: x \in \mathbb{N}, x^2 + 1 = 10 \}$
 - (v) $B = \{ x: x \in \mathbb{N}, x \text{ is odd}, -5 < x < 6 \}$

Marks 5

d) Let $X = \{x: 3x = 6\}$. Explain does X = 2?

- Marks 2
- e) Which of these sets are equal: $\{r,s,t\}$, $\{t,s,r\}$, $\{s,r,t\}$, $\{t,r,s\}$?
- Marks 2

f) Consider the sets:

$$\{4, 2\}, \{x: x^2 - 6x + 8 = 0\}, \{x: x \in \mathbb{N}, x \text{ is even, } 1 < x < 5\}.$$
 Which of them are equal to $B = \{2, 4\}$?

Marks 2

- g) Draw the K-Map of the following expression. $Z = f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}B + AB\overline{C} + AC$ Marks 3
- h) Explain the difference between $A \subseteq B$ and $A \subseteq B$.

Marks 2

- i) Show that $A = \{2, 3, 4, 5\}$ is not a subset of $B = \{x: x \in \mathbb{N}, x \text{ is even}\}$.
- Marks 2

- j) Suppose $A = \{1,2\}$. Find
 - (i) A^2
 - (ii) A^3

Marks 2

- k) A class consists of seven men and five women. Find the number m of committees of five that can be selected from the class.

 Marks 2
- 1) Determine the power set P(A) of $A=\{a, b, c, d, e\}$

Marks 4

Question 2

- a) Consider the following sets:
 - (I) $X = \{x: x \text{ is an integer, } x > 1\}$
 - (II) $Y = \{y: y \text{ is an positive integer, divisible by } 2\}$

(III) $Z = \{z: z \text{ is an even number }, \text{ greater than } 2\}$ Which of them are subset of $w = \{2, 4, 6, \dots\}$?	Marks 3
 b) Suppose that A= {1,2,3,4}, B= {2,3,4,5,6,7}, C= {3,4}, D= {4,5,6}and (i) i) Which of the five sets can equal X if X ⊆ A and X ⊆ B? (ii) Which of the five sets can equal to X if X ⊄ D and X ⊆ C? (iii) Find the smallest set M which contains all five sets. (iv) Find the largest set N which is a subset of all the five set. 	$nd E= \{3\}$
(17) I find the largest set IV which is a subset of all the five set.	Marks 4
c) Draw a venn diagram of sets A, B, C where A and B have elements in C have elements in common, but A and C are disjoint.	common, B and Marks 2
d) Draw a venn diagram of sets A, B, C where A⊆B, sets A and C are d C have elements in common.	lisjoint, but B and Marks 2
e) Suppose U= $\{1,2,3,8,9\}$, A= $\{1,2,3,4\}$, B= $\{2,4,6,8\}$, and C= $\{3,4,6,6\}$ (i) $(A \cup B) \cup C$ and	.,5,6}. Find
(ii) $A \cup (B \cup C)$	Marks 4
f) Determine which of the following sets are finite. (i) A={seasons in the year} (ii) B= {state in the union}	
(iii) C={+ve integers less than 1}	Marks 3
g) Let R be the relation on A= $\{1,2,3,4\}$ defined by: R = $\{(1,1),(3,1),(3,4),(4,2),(4,3)\}$ Find the composition R ² = R o R from the relation	Marks 2
QUESTION 3	
a) Suppose U={1,2,3,8,9},A= {1,2,3,4}, B={2,4,6,8}, and C={3,4} (i) Find A ^c	.,5,6}.
(ii) A\B (iii) B\B	Marks 4
b) Suppose U= $\{1,2,3,8,9\}$, A= $\{1,2,3,4\}$, B= $\{2,4,6,8\}$, and C= $\{3,4\}$. Find (i) $(A \cap B) \setminus C$,5,6}.
$(ii) \qquad (A \land B) \land C$ $(ii) \qquad (A \land B) \circ$	Marks 2
c) Prove the commutative laws: (i) $A \cup B = B \cup A$ and (ii) $A \cap B = B \cap A$	Marks 2
d) Write the dual of each set equation: (i) $(A \cup B \cup C)^c = (A \cup C)^c \cap (A \cup B)^c$	
(ii) $(A \cup U) \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Marks 2
e) Prove the absorption laws: $A \cup (A \cap B) = A$ Page 3 of 6	Marks 4

- f) Translate each of the following statements in to a venn diagram.
 - (i) all students are lazy
 - (ii) some students are lazy. Marks 2
- g) Given $A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 0 \\ -6 & 7 \end{pmatrix}$. Find $(AB)^T$ Marks 2
- h) Consider the expression $Z = f(A,B) = \overline{A}\overline{B} + A \overline{B} + \overline{A}B$. Plot the Karnaugh map and find the minimal form of Z. Marks 2

QUESTION 4

- a) Find the number of elements in the finite set:
 - (i) $A=\{2,4,6,8,10\}$
 - (ii) $B=\{x: x^2=4\}$
 - (iii) $C = \{x: x > x + 2\}$

Marks 3

- b) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result were:
 - 45 had taken sociology
 - 38 had taken anthropology
 - 21 had taken history
 - 18 had taken sociology and anthropology
 - 9 had taken sociology and history
 - 5 had taken history and anthropology and
 - 23 had taken no courses in any of the area.
- (i) Draw a venn diagram that will show the results of the survey. Marks 4
- (ii) Determine the number k of students who had taken classes in exactly (1) one of the areas, and (2) two of the areas.

 Marks 2
- c) Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. find $A \times B$ Marks 2
- d) Given $A = \{1,2\}$, $B = \{x, y, z\}$, and $C = \{3,4\}$ Find $A \times B \times C$ and $n(A \times B \times C)$ by the help of tree diagram. Marks 3
- e) Let R be the relation from A = $\{1, 2, 3, 4\}$ to B = $\{x, y, z\}$ defined by R = $\{(1,y),(1,z),(3,y),(4,x),(4,z)\}$
 - (i) Determine the domain and range of R
 - (ii) Find the inverse relation R⁻¹ of R. Marks 2

f) Let R be the relation on $A = \{1,2,3,4,5\}$ described by the directed graph in the fig. write R as a set of ordered pairs. Marks 2

g) Draw the k-map of the expression: $Z = f(A,B) = A\overline{B} + AB$

Marks 2

QUESTION 5

- a) Describe the "arrow diagram" of a relation R from a finite set A to a finite set B. Illustrate using the relation R from set $A = \{1,2,3,4\}$ to set $B = \{x, y, z\}$ defined by $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$ Marks 2
- b) Consider the following three relations on the set $A = \{1,2,3\}$:

$$R = \{(1,1), (1,2), (1,3), (3,3)\}$$

$$S = \{(1,1),(1,2),(2,1),(2,2),(3,3)\}$$

$$T = AXA$$

- (i) Determine which of the relations are reflective.
- (ii) Determine which of the relations are symmetric.
- (iii) Determine which of the relations are transitive.

Marks 3

c) Functions f: $A \rightarrow B$, g: $B \rightarrow C$

Find the composition function h o g

Marks 3

d) Prove the associative law: $(p \land q) \land r \equiv p \land (q \land r)$

Marks 4

e) Use a K-map to find the prime implicants and minimal form for each of the following complete sum-of-products Boolean expressions.

$$E_1$$
= $xyz + xyz' + xy'z + x'yz + x'y'z$

Marks 3

f) Design a three-input minimal AND-OR circuit L that will have the following truth table:

T= [A=00001111, B= 00110011, C= 01010101, L= 11001101

Marks 3

g) Using algebraic method, simplify $Z = A\overline{B} + AB$

Marks 2