KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: COMP 122

COURSE TITLE: DISCRETE STRUCTURE

- STREAM: Y1S2
- DAY: WEDNESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 16/03/2011

INSTRUCTIONS:

NOTE: - PART-A IS COMPULSORY, HAS 30 MARKS AND FROM PART-B, YOU CAN ATTEMPT ANY TWO QUESTIONS. EACH QUESTION HAS 20 MARKS.

PART-A

QUESTION ONE (MAXIMUM MARKS 30)

a) Rewrite the following statements using set notation: i) the element 1 is not a member of A ii) A is a subset of C Marks 2 b) Let p: Amman is in Nakuru and q: 2+2=5 What is the proposition $p \wedge \neg q$? i) ii) What is the value of $p \wedge \neg q$? What is the proposition $\neg p \lor \neg q$? iii) What is the value of $\neg p \lor \neg q$? Marks 4 iv) c) List the elements of the following sets; here $N = \{1, 2, 3, \dots\}$. $C = \{ x: x \in N, 4+x = 3 \}$ i) A = { x: x \in N, x² + 1 = 10 } ii) $B = \{ x: x \in N, x \text{ is odd}, -5 < x < 5 \}$ Marks 3 iii) d) Prove the following equivalences by drawing the truth tables i) $\neg p \lor \neg q \equiv \neg (p \land q)$ ii) $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ Marks 2 e) The difference of two propositions is defined by $p-q \equiv p \land \neg q$ prove that $p \rightarrow q \equiv \neg (p - q)$ Marks 2 f) Consider the sets :{4, 2}, {x: $x^2 - 6x + 8 = 0$ }, {x: $x \in N$, x is even, 1 < x < 5}. Which of them are equal to $B = \{2, 4\}$? Marks 2 g) Convert these binary numbers to decimal. i) 101010 ii) 101001000 Marks 3 h) Let A={1,2,3,4,5}, B={0,2,4,6} and C={1,3,5}. Find the following set. i) $(A \cup C) \oplus (A \cap C)$ ii) $A \oplus (B \cup C)$ iii) $(A \oplus B) - (A \oplus C)$ iv) $(A-B) \oplus (A-C)$ Marks 4 i) Suppose $A = \{1, 2\}$. Find A^3 Marks 2 i) A class consists of seven men and five women. Find the number m of committees of five that can be selected from the class. Marks 2

k) Determine the power set P(A) of $A=\{x, y, z, p\}$ Marks 4

Question 2

a) How many positive integers ≤ 200 are multiples of

- i) 3 or 5?
- ii) Not multiples of 2 or 17? Marks 2

b) Suppose that $A = \{1, 2, 3, 4\}, B = \{2, 3, 4, 5, 6, 7\}, C = \{3, 4\}, D = \{4, 5, 6\} and E = \{3\}$

- 1. Which of the five sets can equal X if $X \subseteq A$ and $X \subseteq B$?
- 2. Which of the five sets can equal to X if $X \not\subset D$ and $X \subseteq C$?
- 3. Find the smallest set M which contains all five sets.
- 4. Find the largest set N which is a subset of all the five set. Marks 4

c) Draw a Venn diagram of sets A, B, C where A and B have elements in common, B and C have elements in common, but A and C are disjoint. Marks 2

d) True or false? Use the Venn diagrams to verify each one.

i) $(A \cup B) - (A \cap B) = A \oplus B$	
$ii)(A \oplus B) - B = A$	Marks 3

e) Suppose U= $\{1,2,3,...,8,9\}$, A= $\{1,2,3,4\}$, B= $\{2,4,6,8\}$, and C= $\{3,4,5,6\}$. Find (i) (A \cup B) \cup C and (ii) A \cup (B \cup C) Marks 4

f) Determine which of the following sets are finite.

- (i) A={seasons in the year}
- (ii) $B = \{ state in the union \}$
- (iii)C={+ve integers less than 1}Marks 3g) Convert these decimal numbers to binary.

Marks 2

- i) 37
- ii) 99

Question 3

a)	Identify	each	proposition	as a	tautology,	contradiction,	or contingency.	
	2		1 1				0,000	

i) $(p \land q) \rightarrow p$	Marks 2
ii) $p \to (p \lor q)$	Marks 2

b) Draw the logic circuit diagram of the expression

$$x \cdot y = \overline{\overline{x} + \overline{y}},$$

c) i) Find out the expression from the logic circuit diagram.	Marks 2
ii) Convert the expression into minimal form.	Marks 4
iii) Draw the logic circuit diagram of the minimal expression	Marks 2

- d) Find the number of distinct permutations that can be formed from all the letters of each word
 - I. THEM; and II. THAT Marks 2

e) Draw the truth table of the following ii. $\neg p \lor \neg q$

iii. $\neg (p \land q) \rightarrow p$ Marks 2

Marks 2

Marks 2

f) Describe the "arrow diagram" of a relation R from a finite set A to a finite set B. Illustrate using the relation R from set A = $\{1,2,3,4\}$ to set B = $\{x, y, z\}$ defined by $\mathbf{R} = \{(1, \mathbf{y}), (1, \mathbf{z}), (3, \mathbf{y}), (4, \mathbf{x}), (4, \mathbf{z})\}$ Marks 2

Question 4

- a) How many different permutations are there of the elements taken from:
 - i. The multiset {A, B,B,C}?
 - The word DISCRETE? ii.
 - iii. The word MATHEMATICS?
 - The word UNUSUAL? iv. Marks 4
- b) How many integer solutions of x + y + z = 11 with each given condition?

i) x, y, z are non-negative.

ii) x, y, z are positive.

c) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result was:

- 45 had taken sociology
- 38 had taken anthropology
- 21 had taken history
- 18 had taken sociology and anthropology

9 had taken sociology and history

- 5 had taken history and anthropology and
- 23 had taken no courses in any of the area.

(i) Draw a Venn diagram that will show the results of the survey. Marks 4

(ii) Determine the number k of students who had taken classes in exactly (1) one of the areas, and (2) two of the areas. Marks 2

d) Suppose	e U={1,	$\{2,3,\ldots,8,9\}, A = \{1,2,3,4\}, B = \{2,4,6,8\}, and C = \{3,4,5\}$	5,6}.
Find	(i) (ii) (iii) (iv)	A ^c B ^c A\B B\B	Marks 4
e) Let R be $R = \{(1, y)\}$ (i) Determ (ii) Find th	e the rel), (1,z), ine the ne inver	lation from A = {1, 2, 3, 4} to B = {x, y, z} defined by (3,y),(4,x),(4,z)} domain and range of R rese relation R^{-1} of R.	Marks 2
f) In a grou each event i) All f	up of 5 given l cour are	men and 5women, four people will be chosen. Find the pelow. women	probability of
ii) Equ	al numl	ber of men and women	Marks 2
Question	<u>5</u>		
a) Consider $R = \{(1,1), S = \{(1,1), T = AXA\}$	er the fo $(1,2),(1)$ $(1,2),(2)$	bllowing three relations on the set A= {1,2,3}: ,3),(3,3)} 2,1),(2,2),(3,3)}	
(i) Determ (ii) Determ	ine whi nine wh	ich of the relations are reflective. ich of the relations are symmetric.	Marks 2
b) Convert $\begin{bmatrix} 0 & 0 \end{bmatrix}$	t these z	zero-one matrices to digraphs.	
i) 1 0 1 0	1 0		Marks 3
ii) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$	$ \begin{array}{ccc} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $		Marks 3
c) Use a K-map to find the prime implicates and minimal form for each of the following complete sum-of-products Boolean expressions.			
$E_1 = xyz + z$	xyz' + x	xy'z + x'yz + x'y'z	Marks 3
d) Design table:	a three-	input minimal AND-OR circuit L that will have the follo	owing truth
T = [x=00001111, y=00110011, z=01010101, L=11011001]			

e) Are these graphs Euler path/circuit?

Marks 2