

UNIVERSITY EXAMINATIONS
 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE
COURSE CODE: COMP 122
COURSE TITLE: DISCRETE STRUCTURE

STREAM:
 Y1S2

DAY: WEDNESDAY
TIME:
2.00 - 4.00 P.M.

DATE:
16/03/2011

INSTRUCTIONS:

NOTE: - PART-A IS COMPULSORY, HAS 30 MARKS AND FROM PART-B, YOU CAN ATTEMPT ANY TWO QUESTIONS. EACH QUESTION HAS 20 MARKS.

PART-A

QUESTION ONE (MAXIMUM MARKS 30)

a) Rewrite the following statements using set notation:
i) the element 1 is not a member of A
ii) A is a subset of C

Marks 2
b) Let p: Amman is in Nakuru and q: $2+2=5$
i) What is the proposition $p \wedge \neg q$?
ii) What is the value of $p \wedge \neg q$?
iii) What is the proposition $\neg p \vee \neg q$?
iv) What is the value of $\neg p \vee \neg q$? Marks 4
c) List the elements of the following sets; here $\mathrm{N}=\{1,2,3 \ldots \ldots\}$.
i) $\quad C=\{x: x \in N, 4+x=3\}$
ii) $\quad A=\left\{x: x \in N, x^{2}+1=10\right\}$
iii) $\quad B=\{x: x \in N, x$ is odd, $-5<x<5\}$

Marks 3
d) Prove the following equivalences by drawing the truth tables
i) $\neg p \vee \neg q \equiv \neg(p \wedge q)$
ii) $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$

Marks 2
e) The difference of two propositions is defined by $\mathrm{p}-\mathrm{q} \equiv p \wedge \neg q$.prove that

$$
\begin{equation*}
p \rightarrow q \equiv \neg(p-q) \tag{Marks 2}
\end{equation*}
$$

f) Consider the sets : $\{4,2\}$, $\left\{x: x^{2}-6 x+8=0\right\},\{x: x \in N, x$ is even, $1<x<5\}$. Which of them are equal to $B=\{2,4\}$?
g) Convert these binary numbers to decimal.
i) 101010
ii) 101001000

Marks 3
h) Let $\mathrm{A}=\{1,2,3,4,5\}, \mathrm{B}=\{0,2,4,6\}$ and $\mathrm{C}=\{1,3,5\}$. Find the following set.
i) $(A \cup C) \oplus(A \cap C)$
ii) $A \oplus(B \cup C)$
iii) $(A \oplus B)-(A \oplus C)$
iv) $(A-B) \oplus(A-C)$

Marks 4
i) Suppose $A=\{1,2\}$. Find A^{3}
j) A class consists of seven men and five women. Find the number m of committees of five that can be selected from the class.

Marks 2
k) Determine the power set $P(A)$ of $A=\{x, y, z, p\}$

Question 2

a) How many positive integers ≤ 200 are multiples of
i) $\quad 3$ or 5 ?
ii) Not multiples of 2 or 17? Marks 2
b) Suppose that $A=\{1,2,3,4\}, B=\{2,3,4,5,6,7\}, C=\{3,4\}, D=\{4,5,6\}$ and $E=\{3\}$

1. Which of the five sets can equal X if $\mathrm{X} \subseteq \mathrm{A}$ and $\mathrm{X} \subseteq \mathrm{B}$?
2. Which of the five sets can equal to X if $\mathrm{X} \not \subset \mathrm{D}$ and $\mathrm{X} \subseteq C$?
3. Find the smallest set M which contains all five sets.
4. Find the largest set N which is a subset of all the five set. Marks 4
c) Draw a Venn diagram of sets A, B, C where A and B have elements in common, B and C have elements in common, but A and C are disjoint.

Marks 2
d) True or false? Use the Venn diagrams to verify each one.
i) $(A \cup B)-(A \cap B)=A \oplus B$
ii) $(A \oplus B)-B=A$

Marks 3
e) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$. Find (i) $\quad(A \cup B) \cup C$ and \quad (ii) $A \cup(B \cup C) \quad$ Marks 4
f) Determine which of the following sets are finite.
(i) $\mathrm{A}=\{$ seasons in the year $\}$
(ii) $\mathrm{B}=\{$ state in the union $\}$
(iii) $\mathrm{C}=\{+\mathrm{ve}$ integers less than 1$\}$

Marks 3
g) Convert these decimal numbers to binary.
i) $\quad 37$
ii) $\quad 99$

Marks 2

Question 3

a) Identify each proposition as a tautology, contradiction, or contingency.
i) $(p \wedge q) \rightarrow p$

Marks 2
ii) $p \rightarrow(p \vee q)$

Marks 2
b) Draw the logic circuit diagram of the expression $x \cdot y=\overline{\bar{x}+\bar{y}}$,
c) i) Find out the expression from the logic circuit diagram. Marks 2
ii) Convert the expression into minimal form.

Marks 4
iii) Draw the logic circuit diagram of the minimal expression

d) Find the number of distinct permutations that can be formed from all the letters of each word
I. THEM; and
II. THAT

Marks 2
e) Draw the truth table of the following
ii. $\neg p \vee \neg q$
Marks 2
iii. $\quad \neg(p \wedge q) \rightarrow p$
Marks 2
f) Describe the " arrow diagram" of a relation R from a finite set A to a finite set B . Illustrate using the relation R from set $A=\{1,2,3,4\}$ to set $B=\{x, y, z\}$ defined by $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$

Question 4

a) How many different permutations are there of the elements taken from:
i. The multiset $\{\mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{C}\}$?
ii. The word DISCRETE?
iii. The word MATHEMATICS?
iv. The word UNUSUAL?
b) How many integer solutions of $\mathrm{x}+\mathrm{y}+\mathrm{z}=11$ with each given condition?
i) x, y, z are non-negative.
ii) $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are positive.

Marks 2
c) One hundred students were asked whether they had taken courses in any of the three areas, sociology, anthropology, and history. The result was:
45 had taken sociology
38 had taken anthropology
21 had taken history
18 had taken sociology and anthropology
9 had taken sociology and history
5 had taken history and anthropology and
23 had taken no courses in any of the area.
(i) Draw a Venn diagram that will show the results of the survey.

Marks 4
(ii) Determine the number k of students who had taken classes in exactly (1) one of the areas, and (2) two of the areas.

Marks 2
d) Suppose $U=\{1,2,3, \ldots \ldots . .8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$, and $C=\{3,4,5,6\}$.

Find
(i) A^{c}
(ii) B^{c}
(iii) $\mathrm{A} \backslash \mathrm{B}$
(iv) $\mathrm{B} \backslash \mathrm{B}$

Marks 4
e) Let R be the relation from $A=\{1,2,3,4\}$ to $B=\{x, y, z\}$ defined by $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$
(i) Determine the domain and range of R
(ii) Find the inverse relation R^{-1} of R .

Marks 2
f) In a group of 5 men and 5 women, four people will be chosen. Find the probability of each event given below.
i) All four are women
ii) Equal number of men and women

Marks 2

Question 5

a) Consider the following three relations on the set $\mathrm{A}=\{1,2,3\}$:
$R=\{(1,1),(1,2),(1,3),(3,3)\}$
$\mathrm{S}=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$
$\mathrm{T}=\mathrm{AXA}$
(i) Determine which of the relations are reflective.
(ii) Determine which of the relations are symmetric.

Marks 2
b) Convert these zero-one matrices to digraphs.
i) $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

Marks 3
ii) $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$

Marks 3
c) Use a K-map to find the prime implicates and minimal form for each of the following complete sum-of-products Boolean expressions.
$\mathrm{E}_{1}=\mathrm{xyz}+\mathrm{xyz}{ }^{\prime}+\mathrm{xy} y^{\prime} \mathrm{z}+\mathrm{x}^{\prime} \mathrm{yz}+\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}$
Marks 3
d) Design a three-input minimal AND-OR circuit L that will have the following truth table:
$\mathrm{T}=[\mathrm{x}=00001111, \mathrm{y}=00110011, \mathrm{z}=01010101, \mathrm{~L}=11011001$
e) Are these graphs Euler path/circuit?

Marks 2

