

UNIVERSITY

**KABARAK** 

# UNIVERSITY EXAMINATIONS

## 2008/2009 ACADEMIC YEAR

### FOR THE DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND MATHEMATICS

| <b>COURSE CODE:</b>  | ECON 312          |
|----------------------|-------------------|
| <b>COURSE TITLE:</b> | ECONOMETRICS I    |
| STREAM:              | Y3S2              |
| DAY:                 | MONDAY            |
| TIME:                | 11.00 – 1.00 P.M. |
| DATE:                | 4/8/2008          |

### **INSTRUCTIONS:**

- 1. Answer **QUESTION ONE** and any other **TWO** questions.
- 2. Question **ONE** carries **30 marks** and the rest **20 marks each.**
- 3. Show all your workings clearly.

### PLEASE TURN OVER

#### **QUESTION ONE**

- (a) (i) Define the term econometrics.
  - (ii) Explain how Econometrics is different from econometric theory, mathematical economics and economic statistics.
- (b) Explain in detail the general assumptions underlying the simple classical linear regression model.
- (c) Explain the steps that constitute an Econometric research methodology.
- (d) The following data relates to quantity demanded (Q) and the price (P) of beans in a rural market.

| Q | 47 | 30 | 22 | 44 | 64 | 55 |
|---|----|----|----|----|----|----|
| Р | 8  | 10 | 13 | 9  | 6  | 5  |

- (i) Specify and estimate the demand for beans
- (ii) Calculate the coefficient of determination
- (iii) Interpret your results in (i) and (ii) above.
- (iv) Compute the average force elasticity of demand and price elasticity of demand when the price of beans is Ksh.10.
- (v) Test the hypothesis that the slope coefficient of the estimated model in d(i) is statistically significant at 5%.

#### **QUESTION TWO**

Given the data on the explanatory variables  $X_t$  and the estimated residuals,  $e_t$  as;

| Xt | $e_t$ |
|----|-------|
| 6  | 443   |
| 7  | 167   |
| 8  | -53   |
| 9  | -271  |
| 10 | -256  |
| 11 | -86   |
| 12 | -175  |
| 13 | -35   |
| 14 | -42   |
| 15 | 266   |

| 16 | 13   |
|----|------|
| 17 | -21  |
| 18 | -53  |
| 19 | -31  |
| 20 | 72   |
| 21 | -147 |
| 22 | -53  |
| 23 | -63  |
| 24 | 205  |
| 25 | 122  |

- (a) Test for autocorrelation using Durbin-Watson test (Use K' = 3 at 5% level of significance)
- (b) Explain the consequences of autocorrelation on Parameter estimates.
- (c) Outline the factors that give rise to autocorrelation.

#### **QUESTION THREE**

- (a) (i) explain the role of the disturbance term in an econometric model.
  - (ii) Explain the desirable properties of the ordinary least squares (OLS) estimator.
  - (iii) Outline any three uses of econometrics in economic analysis.

#### (3mks)

(b) Consider the following simple classical linear regression model.

 $Y_i = \quad \propto_{o} + \, \propto_{1} \, x_1 + \epsilon_i$ 

Derive the ordinary least squares estimators  $\hat{\alpha}_0$  and  $\hat{\alpha}_1$  for the above specified model.

#### **QUESTION FOUR**

- (a) Distinguish the following pairs of concepts
  - (i) Multicollinearity and Autocorrelation (2mks)
  - (ii) Heteroscedasticity and Homoscedasticity (2mks)
  - (iii) Mathematical economic model and Econometric model (2mks)
- (b) Explain in detail the consequences of multicollinearity in an econometric model

(c) An economics student wanted to investigate the effects wealth (W) on assumption
(C). Using a sample of nine (9) the student came up with the following intermediate results in real values.

$$\sum_{i} c = 1052 \qquad \sum_{i} w = 1017 \qquad \sum_{i} w c = 119750$$

- (i) Specify a regression model for the above data set.
- (ii) Estimate the model in (i) above and interpret your results on a priori ground.

#### **QUESTION FIVE**

(a) The time series data shown below represent the total cost (TC) and the total level of output (Q) of a dairy plant in an urban area from 1998 to 2007

| Year | Packets of milk (Q) | Total cost (TC) (Kf) |
|------|---------------------|----------------------|
| 1998 | 40                  | 150                  |
| 1999 | 42                  | 140                  |
| 2000 | 48                  | 160                  |
| 2001 | 55                  | 170                  |
| 2002 | 65                  | 150                  |
| 2003 | 79                  | 162                  |
| 2004 | 88                  | 185                  |
| 2005 | 100                 | 165                  |
| 2006 | 120                 | 190                  |
| 2007 | 140                 | 185                  |

(i) Test the null hypothesis that the TC and Q of the plant are directly related by estimating the cost function

 $TC = c_0 + c_1 Q + \varepsilon$  (12mks)

- (ii) Interpret the estimated parameters (3mks)
- (b) Explain the Bunch Map analysis test for multicollinearity (5mks)