KABARAK

UNIVERSITY UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN
TELECOMMUNICATIONS
COURSE CODE: PHYS 126
COURSE TITLE: ELECTRICITY AND ELECTRONIC SYSTEMS

STREAM:

DAY:
TIME:
DATE:
10/12/2010

INSTRUCTIONS:

- Answer Question ONE and any other THREE Questions. Question One carries 20marks while each of the other Two Questions carry 10marks.
- The following constants may be useful
- Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A}$
- Permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N M^{2}$
- Resistivity of Iron $\rho=9.68 \times 10^{-8} \Omega m$

PLEASE TURN OVER

QUESTION 1 (20 marks)

a) i) Define potential difference of a source.
(1mk)
ii) A charge of 90 C is moved when energy of 40 J is applied between two points. Find the potential difference between the two points.
iii) State two properties of voltage and current sources.
b) Sketch a circuit diagram showing how a.c. full wave rectification can be achieved using a bridge rectifier
c) i) A rectangular block of Iron has dimensions 1.5 cm by 1.5 cm by 20 cm . Find the resistance of the block between the two square ends.
(2mks)
ii) Explain how minority charge carriers are produced in extrinsic semiconductors. (1mk)
d) i) State Kirchhoff's voltage law.
(1mk)
ii) Calculate the current in the given circuit

e) Differentiate between extrinsic and intrinsic semiconductors
f) i) Differentiate between poles and zeros of a system
ii) A linear system is described by

$$
\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-6 y=2 \frac{d u}{d t}+u
$$

Find the system poles and zeros

QUESTION 2 (10 marks)

a) By applying mesh analysis, find the current through each branch in the given circuit
(5mks)

b) State maximum power transfer theorem and hence show that $P_{L_{\max }}=\frac{E_{T h}{ }^{2}}{4 R_{T h}} \quad$ (5mks)

QUESTION 3 (10 marks)

a) i) What is capacitance?
(1mk)
ii) A potential difference of 4 KV is applied across the plates of a capacitor of capacitance $25 \mu \mathrm{~F}$. Calculate the charge in the capacitor.
b) i) Define time constant of an RC circuit
ii) Derive the expression of charge (Q) at any time (t) of a capacitor during the discharging phase, hence show that time constant (τ) during this phase is 37% of maximum value.

QUESTION 4 (10 marks)

a) An RL circuit with an inductor $\mathrm{L}=8 \mathrm{mH}$ and a resistor $\mathrm{R}=10 \Omega$ is connected to a battery of 15 V . Calculate for this circuit,
i). The rate of increase of current at the instant when current $\mathrm{I}=0.5 \mathrm{~A}$
ii). The current 0.5 seconds after the circuit was switched on.
b) A series RLC circuit is driven by an a.c of the form $V=V_{\max } \operatorname{Sin} \varpi t$. Given that $\mathrm{R}=200 \Omega, \mathrm{~L}=0.8 \mathrm{mH}, \mathrm{C}=0.5 \mu \mathrm{~F}, \mathrm{f}=50 \mathrm{~Hz}$ and $\mathrm{V}_{\max }=240 \mathrm{~V}$. Find for this circuit
i). The amplitude current
ii). The phase angle

QUESTION 5 (10 marks)

a) Consider the given transistor circuit

Given that for this transistor, $V_{B E}=0.7 \mathrm{~V}$ and $\beta_{D C}=150$, determine for the circuit;
i). Collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$
ii). Collector-emitter voltage $\left(\mathrm{V}_{\mathrm{CE}}\right)$
b) i) Sketch a schematic diagram of an operational amplifier integrator circuit

