UNIVERSITY EXAMINATIONS
 2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF TELECOMMUNICATION

COURSE CODE: PHYS 126
COURSE TITLE: ELECTRICITY AND ELECTRONIC SYSTEMS

STREAM:
DAY:
TIME:
DATE:

INSTRUCTIONS:

- Answer Question ONE and any other THREE Questions. Question One carries 20marks while each of the other Three Questions carry 10marks.
- The following constants may be useful
- Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A}$
- Permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N M^{2}$
- Resistivity of Steel $\rho=1.6 \times 10^{-8} \Omega m$

PLEASE TURN OVER

QUESTION 1 (20 marks)

a) Define the following terms
i). Electric current
ii). Resistance
b) i) State and explain any two factors that affect the resistance of a metallic conductor.
(2mks)
ii) A rectangular block of Steel has dimensions 2.5 cm by 2.5 cm by 40 cm . Find the conductance of the block between the two square ends.
c) A charge of 240 C is moved when energy of 45 J is applied between two points. Find the voltage between the two points.
e) Sketch a circuit diagram showing how a.c. full wave rectification can be achieved using a bridge rectifier (2mks)
f) Explain why for good conductors, increase in temperature leads to decrease in conductivity while for semiconductors, the opposite is true
(1mk)
g) i) State Kirchhoff's current law.
(1mk)
ii) Determine the voltage across R_{6} in the given circuit
(3mks)

e) Differentiate between extrinsic and intrinsic semiconductors
f) i) Differentiate between poles and zeros of a system.
ii) A linear system is described by
$\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=2 \frac{d u}{d t}+u$
Find the system poles and zeros
(3mks)

QUESTION 2 (10 marks)

a) i) State Thevenin's theorem
(1mk)
ii) Find the Thevenin equivalent circuit for the given network, hence find the current through R_{L} for $R_{L}=10 \Omega$
(4mks)

b) State maximum power transfer theorem and hence show that $P_{L_{\max }}=\frac{E_{T h}{ }^{2}}{4 R_{T h}} \quad$ (5mks)

QUESTION 3 (10 marks)

a) i) What is capacitance?
(1mk)
ii) A potential difference of 4 KV is applied across the plates of a capacitor of capacitance $25 \mu \mathrm{~F}$.

Calculate the charge in the capacitor.
b) i) Define transient period of an RC circuit
(1mk)
ii) Derive the expression of finding the current (I) at any time (t) of a capacitor during the transient growth, hence show that time constant (τ) during this phase is 63% of maximum value.
(6 mks)

QUESTION 4 (10 marks)

a) Determine the operating region of the transistor in the given circuit. Given that for this transistor $V_{C E(\text { sat })}=0.2 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$ and $\beta_{D C}=50$

b) Sketch a schematic diagram of an inverting operational amplifier and derive its closed-loop gain (A). (3mks)
c) Derive the transfer function of an operational amplifier integrator circuit
(3mks)

QUESTION 5 (10 marks)

a) A series RLC circuit is driven by an a.c of the form $V=V_{\max } \operatorname{Sin} \varpi t$. Given that $\mathrm{R}=250 \Omega, \mathrm{~L}=0.8 \mathrm{mH}$, $\mathrm{C}=2.5 \mu \mathrm{~F}, \mathrm{f}=50 \mathrm{~Hz}$ and $\mathrm{V}_{\max }=200 \mathrm{~V}$. Find for this circuit
i). The amplitude current
(3mks)
ii). The phase angle
(2mks)
b) Define quality (Q) factor of a series RLC circuit and show that the Q-factor for series RLC circuit is given by

$$
\begin{equation*}
Q_{s}=\frac{1}{R} \sqrt{\frac{L}{C}} \tag{3mks}
\end{equation*}
$$

c) Define resonance frequency of a series RLC circuit and show that this frequency is given by

$$
\begin{equation*}
\varpi=\frac{1}{\sqrt{L C}} \tag{2mks}
\end{equation*}
$$

