KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: PHYS 110

COURSE TITLE: ELECTRICITY \& MAGNETISM
STREAM:

Y1S1

DAY:
 THURSDAY

TIME: $\quad 9.00 \mathbf{- 1 1 . 0 0 ~ A . M ~}$
DATE:
26/03/2009

INSTRUCTIONS

Answer QUESTION 1 and ANY OTHER TWO
You may need the following constants:
Electron charge e $=-1.6 \times 10^{-19} \mathrm{C}$.
$\pi=3.14$
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$
1 electron volt $=1.6 \times 10^{-19}$ Joules

PLEASE TURN OVER

Question 1 (30 marks)

(a) Define the following:
(i) Point charge density (1 mk)
(ii) Volume charge density (1 mk)
(b) A line charge density $\lambda(x)$ is given by $\lambda(x)=3 x^{2} C / m$. Calculate the total charge contained between the points $x=0$ and $x=3 \mathrm{~mm}$.
(3 mks)
(c) (i) Define an electric dipole
(ii) Sketch the electric field flux of a dipole
(d) Two equal charges of each $3 \mu \mathrm{C}$ are initially separated by a distance of 2.0 mm . An external force alters their separation to 1.0 mm . What is the change in potential energy?
(3 mks)
(e) State the purpose of filling the space between capacitor plates with a dielectric.
(1 mk)
(f) Explain why electricity distribution companies lose more power in summer than in winter.
(g) Explain why a potentiometer can be referred to as a voltmeter with infinite resistance.
(2 mks)
(h) Sketch charging and discharging curves of a capacitor
(2 mks)
(i) Show that the motion of a charged particle in a magnetic field is a circle.
(3 mks)
(j) A strip of copper carrying a current I is placed within a magnetic field \underline{B}. State TWO forces experienced by the electrons inside the copper strip.
(2 mks)
(k) Calculate the magnetic field at a point 2 mm from an infinitely long conductor carrying a current of 4 A .
(3 mks)
(1) Sketch the variation of the magnetic field strength inside and outside a conducting wire assuming the current is uniformly distributed through the wire.
(2 mks)
(m) Show that the relationship between the potential energy and electric force is of the form $F=-\nabla U$.

Question 2 (20 marks)

(a) (i) Define Electric field. (3 mks)
(ii) Show that the electric field for a point charge can be expressed as:
$E=k \frac{Q}{r^{2}}$ where k is a constant and r is the distance between charge Q and the test charge.
(iii) Three charges are placed in a straight line as shown in figure below. Determine the force exerted on the $6 \mu \mathrm{C}$ charge by the other two charges.
(6 mks)

(b) (i) Consider a point charge Q enclosed by a surface S and show that the differential form of Gauss's law for electric fields for a collection of charges is of the form

$$
\oint_{S} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\sum Q / \varepsilon_{0}
$$

where E is the electric field.
(ii) A conducting sphere of radius $\mathrm{r}=3 \mathrm{~mm}$ carries a charge $Q=6 \mu \mathrm{C}$ on its surface. Calculate the electric field at the surface.

Question 3 (20 marks)

(a) In the figure below, sketch a graph showing the variation of potential on the various points between a and d .

(b) (i) Derive a general expression for equivalent resistance for many resistors connected in parallel.
(ii) Show that for two resistors, R_{1} and R_{2} connected in parallel, the total resistance is $\quad R_{\text {total }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
(2 mks)
(1ii) In the figure below, $\mathrm{R}_{1}=3 \mathrm{k} \Omega, \mathrm{R}_{2}=0.3 \mathrm{k} \Omega, \mathrm{R}_{3}=2 \mathrm{k} \Omega, \mathrm{R}_{4}=5 \mathrm{k} \Omega, \mathrm{R}_{5}=6$ $\mathrm{k} \Omega$ and $\mathrm{V}=12$ volts. Assuming that the voltage source has zero internal resistance, determine
(I) Current through R_{3}
(6 mks)
(II) Total power dissipated by the circuit.
(3 mks)

Question 4 (20 marks)

(a) (i) State Faraday's law of electromagnetic induction. (1 mk)
(ii) Show that the torque (τ) exerted on a rectangular coil of N turns carrying a current I oriented at an angle of φ in a magnetic field B can be expressed as $\tau=B I A N \sin \varphi$, where A is the cross sectional area of the coil. Hence calculate the maximum torque for a coil $\mathrm{N}=100$ turns, $\mathrm{A}=50 \mathrm{~mm}^{2}, I=2 \mathrm{~A}$ subjected to a B field of 10 Tesla. (7 mks)
(b) (i) State Amperes law.
(2 mks)
(ii) Derive an expression for the magnetic field (B) of a solenoid carrying current I , length L and having N number of turns.
(3 mks)
(ii) A solenoid has 100 turns and a length of 10 cm . It carries a current of 0.500 A . What is the magnetic field inside the solenoid? (3 mks)
(c) Describe the following electromagnetic induction losses
(i) Hysteresis losses
(2 mks)
(ii) Winding losses

