KABARAK

UNIVERSITY

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: PHYS 110

COURSE TITLE: ELECTRICITY & MAGNETISM

STREAM: Y1S1

- DAY: THURSDAY
- TIME: 9.00 11.00 A.M
- DATE: 26/03/2009

INSTRUCTIONS

Answer QUESTION 1 and ANY OTHER TWO

You may need the following constants: Electron charge $e = -1.6 \times 10^{-19}$ C. $\pi = 3.14$ $\epsilon_o = 8.85 \times 10^{-12}$ F/m $\mu_o = 4\pi \times 10^{-7}$ Tm/A 1 electron volt =1.6 x 10⁻¹⁹ Joules

PLEASE TURN OVER

Question 1 (30 marks)

(a)	Define the following:			
	(i) Point charge density	(1 mk)		
	(ii) Volume charge density	(1 mk)		
(b)	A line charge density $\lambda(x)$ is given by $\lambda(x)$ contained between the points $x=0$ and $x=1$	$= 3x^2$ C/m. Calculate the total charge		
	F	(3 mks)		
(c)	(i) Define an electric dipole	(1 mk)		
	(ii) Sketch the electric field flux of a c	ipole (1 mk)		
(d)	Two equal charges of each 3µC are initial An external force alters their separation to energy?	ly separated by a distance of 2.0 mm. 0 1.0 mm. What is the change in potential (3 mks)		
(e)	State the purpose of filling the space betw	een capacitor plates with a dielectric. (1 mk)		
(f)	Explain why electricity distribution comp in winter.	anies lose more power in summer than (2 mks)		
(g)	Explain why a potentiometer can be referred resistance.	red to as a voltmeter with infinite (2 mks)		
(h)	Sketch charging and discharging curves o	f a capacitor (2 mks)		
(i)	Show that the motion of a charged particle	e in a magnetic field is a circle. (3 mks)		
(j)	A strip of copper carrying a current <i>I</i> is pl TWO forces experienced by the electrons	aced within a magnetic field <u>B</u> . State inside the copper strip.		
		(2 mks)		
(k)	Calculate the magnetic field at a point 2 m carrying a current of 4 A.	nm from an infinitely long conductor (3 mks)		
(1)	Sketch the variation of the magnetic field wire assuming the current is uniformly di	strength inside and outside a conducting stributed through the wire. (2 mks)		
(m)	Show that the relationship between the poform $F = -\nabla U$.	tential energy and electric force is of the (3 mks)		

Question 2 (20 marks)

- (a) (i) Define Electric field. (3 mks)
 - (ii) Show that the electric field for a point charge can be expressed as:

 $E = k \frac{Q}{r^2}$ where k is a constant and r is the distance between charge Q and the test charge. (3 mks)

(iii) Three charges are placed in a straight line as shown in figure below. Determine the force exerted on the $6 \,\mu\text{C}$ charge by the other two charges.

(6 mks)

(b) (i) Consider a point charge *Q* enclosed by a surface *S* and show that the differential form of Gauss's law for electric fields for a collection of charges is of the form

$$\oint_{S} \mathbf{E} \cdot \mathbf{dS} = \sum Q / \varepsilon_0$$

where E is the electric field.

(5 mks)

(ii) A conducting sphere of radius r = 3 mm carries a charge $Q = 6\mu C$ on its surface. Calculate the electric field at the surface.

(3 mks)

Question 3 (20 marks)

(a) In the figure below, sketch a graph showing the variation of potential on the various points between a and d.(5 mks)

- (b) (i) Derive a general expression for equivalent resistance for many resistors connected in parallel. (4 mks)
 - (ii) Show that for two resistors, R₁ and R₂ connected in parallel, the total resistance is $R_{total} = \frac{R_1 R_2}{R_1 + R_2}$ (2 mks)
 - (1ii) In the figure below, $R_1 = 3k\Omega$, $R_2 = 0.3 k\Omega$, $R_3 = 2k\Omega$, $R_4 = 5k\Omega$, $R_5 = 6 k\Omega$ and V = 12 volts. Assuming that the voltage source has zero internal resistance, determine
 - (I) Current through R_3 (6 mks)
 - (II) Total power dissipated by the circuit. (3 mks)

Question 4 (20 marks)

(a)	(i)	State Faraday's law of electromagnetic induction.	(1 mk)	
	(ii)	Show that the torque (τ) exerted on a rectangular coil of N turns carrying current <i>I</i> oriented at an angle of φ in a magnetic field B can be expressed as $\tau = BIAN\sin\varphi$, where <i>A</i> is the cross sectional area of the coil. Hence calculate the maximum torque for a coil N=100 turns, A=50mm ² , <i>I</i> = 2A		
		subjected to a B field of 10 Tesla.	(7 mks)	
(b)	(i)	State Amperes law.	(2 mks)	
	(ii)	Derive an expression for the magnetic field (B) of a solence current I, length L and having N number of turns.	oid carrying (3 mks)	
	(ii)	A solenoid has 100 turns and a length of 10 cm. It carries 0.500 A. What is the magnetic field inside the solenoid?	a current of (3 mks)	
(c)	Describe the following electromagnetic induction losses			
	(i)	Hysteresis losses	(2 mks)	
	(ii)	Winding losses	(2 mks)	

a