

UNIVERSITY

KABARAK

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SCIENCE **COURSE CODE: PHYS 110 ELECTRICITY AND MAGNETISM COURSE TITLE: SESSION I STREAM:** DAY: MONDAY TIME: 2.00 - 4.00 P.M **DATE:** 29/11/2010

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions. Question one carries 30marks while each of the other Two Questions carry 20marks.
- The following constants may be useful
 - Permeability of free space $\mu_0 = 4\pi \times 10^{-7} Wb / A$
 - Permittivity of free space $\mathcal{E}_0 = 8.85 \times 10^{-12} C^2 / NM^2$
 - Resistivity of Iron $\rho = 9.68 \times 10^{-8} \Omega m$
 - Acceleration due to gravity $g = 9.8m/s^2$

PLEASE TURN OVER

QUESTION 1 (30 marks)

- a) i) Name two types of electric charges(1mark)ii) Explain why conductors cannot be charged by friction.(1mark)
- b) i) State the principle of superposition

(1mark)

ii) The diagram below shows two charges q_1 and q_2 held at a fixed distance d apart.

- I. Find the strength of the electric force that acts on q_1 , given that $q_1 = q_2 = 4.3 \mu C$ and d = 1.5 cm (3marks)
- II. A third point charge $q_3 = 4.3 \mu C$ is brought in and placed as shown. Find the strength of electric force on q_1 now (3marks)

c) Show how Coulomb's law can be deduced from Gauss' law (3marks)

d) A rectangular block of Iron has dimensions 1.6cm by 1.6cm by 25cm. Find the conductance of the block between the two square ends. (2marks)

e) i) State Kirchhoff's voltage law.ii) Calculate the current in the given circuit

(1mark) (3marks)

- f) Define Lorentz force and give its mathematical expression? (2marks)
- g) Consider a thin ring of radius (**R**) carrying a uniform linear charge density (λ) around its circumference as shown

- i). Derive an expression for the electric field (E) at a point (P) a distance (X) from the plane of the ring along its central axis (4marks)
- ii). Show that if X>>R, the ring become like a point charge. (2marks)
- h) i) State and explain two factors that affect the magnitude of torque experienced by a current carrying wire in a magnetic field. (2marks)
 - ii) An electron with magnetic dipole moment $3.6 \times 10^{-24} J/T$ is in a uniform magnetic field of 450T at an angle of 30°. Calculate the magnetic torque on the electron.

(2marks)

QUESTION 2 (20 marks)

a) Define the following terms

- i). Flux of a vector field
- ii). Negative flux
- iii). Gaussian surface
- b) i) Show how Coulomb's law can be deduced from Gauss' law (3marks) ii) A long cylindrical solid conductor of length (L) and radius (R) has charge per unit length (λ) . Find the expression of electric field (\vec{E}) inside and outside the cylinder and sketch the variation of (\vec{E}) against (r) for $0 < R \le r$ and for r>R (5marks)
- c) A 2.5µF capacitor C₁ is charged to a potential difference $V_0 = 12V$, using a battery. The charging battery is then removed, and the capacitor is connected as shown in Figure below to an uncharged 8.0µF capacitor C₂. After the switch S is closed, charge flows from C₁ to C₂ until equilibrium is established, with both capacitors at the same potential difference V.

i).	Calculate the common potential difference (V)	(3marks)
ii).	What is the energy stored after the switch is closed	(3marks)

d) State three effects of dielectrics on capacitors. (3marks)

(3marks)

QUESTION 3 (20 marks)

- a) i) What is a potentiometer?ii) State two uses of potentiometers
- b) Consider the given resistor network circuit.

Assuming that each resistor is 2Ω , Calculate;

- i). Total resistance
- ii). the total current in the circuit

c) Find the current in different branches in the given circuit

(2marks)

(2marks)

(1mark) (2marks) d) Consider a wheat-stone bridge circuit of resistors R_1 , R_2 , R_X and a variable resistor R_S connected in that order in the clockwise network loop, with a galvanometer between one diagonal and a source of e.m.f. in the other diagonal Show that at null condition,

$$R_{X} = R_{S} \left(\frac{R_{2}}{R_{1}} \right)$$
(3marks)

e) Derive the expression of finding the electric potential difference at a point (P) a distance (Z) along the axis of a uniform ring of radius (R) carrying total charge Q. (5marks)

QUESTION 4 (20 marks)

- (1mark)
- a) i) What is magnetic field? ii) State two differences and two similarities between magnetic force and electric force. (4marks)
- b) i) The diagram below shows a wire segment placed in a uniform magnetic field (\vec{B}) that point out of the plane of the diagram.

If the wire carries a current (I), from left to right as shown, derive the expression of the resultant magnetic force $(\overrightarrow{F_R})$ experienced by the wire. (5marks)

- ii) A straight horizontal segment of copper wire carries a current I = 28A. What are the magnitude and direction of magnetic field needed to balance its weight? Given that it's linear mass density is 46.6g/m. (4marks)
- c) Consider a proton of charge $1.6 \times 10^{-19} C$ being moved at a velocity of $3.2 \times 10^7 m/s$ in a uniform magnetic field of $1.2 \times 10^{-3} T$ at an angle of 30° .
 - Find the magnitude of magnetic force experienced by the proton i). (3marks)
 - What will be the acceleration of the proton given that its mass is ii). $1.67 \times 10^{-27} Kg$ (3marks)

QUESTION 5 (20 marks)

a) Define the following terms	(2marks)		
i). Electromagnetic induction			
ii). Magnetic flux			
b) State Lenz's law in words and give its mathematical expression	(2marks)		
c) i) Define inductance	(1mark)		
ii) Calculate the inductance of a solenoid containing 10,000 turns if the	e length of the		
solenoid is 25cm and its cross sectional area is $2cm^2$.	(2marks)		
d) Consider a series RL circuit connected to a d.c. source. Derive the expression of			
finding energy in the circuit.	(5marks)		
e) An RL circuit with an inductor of inductance 8H and resistor of 10Ω i	s connected to		
the terminals of a battery of e.m.f. 15V and negligible internal resistant	nce. Find		
i). The initial rate of increase of current in the circuit	(2marks)		
ii). The rate of increase at the instant when the current is 0.5A	(2marks)		
iii). The current 0.5s after the circuit is closed	(2marks)		
iv). The final steady state current	(2marks)		