EXAMINATIONS
2008/2009 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COURSE CODE: PHYS 110

COURSE TITLE: ELECTRICITY AND MAGNETISM

STREAM:
DAY:
TIME:
DATE:
11/08/2009

INSTRUCTIONS

1. Answer Question One and any other Two
2. Electric charge $e=1.6 \times 10^{-19} \mathrm{C}$
3. $\varepsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \mu_{o}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}, h=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{S}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
4. $M e=9.11 \times 10^{-31} \mathrm{~kg}$,

QUESTION 1 (30 MARKS)

a.) Give any two statements of Gauss's law. (2 marks)
b.) Using a diagram of a capacitor with a dielectric, show that the presence of a dielectric increases amount of charge stored by a capacitor. (4 marks)
c.) A small object carrying a charge of $-5 \times 10^{-9} \mathrm{C}$ experiences a downward force of $20 \times 10^{-9} \mathrm{~N}$ when placed at a certain point in an electric field;
i.) What is the electric field at the point? (2 marks)
ii.) What would be the magnitude and direction of the force acting on an electron placed at the point if the field is the same? (2 marks)
d.) A metal sphere of radius r_{a} is supported on an insulating stand at the center of a hollow metal sphere of inner radius r_{b}. There is a charge $+q$ on the inner sphere and a charge - q on the outer part. Show that the potential difference between the plates is

$$
\mathrm{V}_{\mathrm{ab}}=\frac{q}{4 \pi \varepsilon_{o}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)(4 \text { marks })
$$

e.) A parallel plate capacitor has an area of $1 \mathrm{~m}^{2}$ with its plates at 5 mm apart. A potential difference of 450 V is applied across the capacitor. Find;
i.) Capacitance
ii.) Charge on each plate. (5 marks)
f.) Figure 1 below shows resistors connected both in parallel and series.
i.) Calculate the equivalent resistance of the circuit. (3 marks)
ii.) What is the potential difference between \mathbf{x} and \mathbf{a} if the current in the 8Ω resistor is 0.5 A ? (3 marks)

Fig 1
g.) Give the difference between resistivity and resistance of a material. (2 marks)
h.) A $1.0 \mu \mathrm{~F}$ capacitor with an initial stored energy of 0.50 J is discharged through a $1.0 \mathrm{M} \Omega$ resistor;
i.) What is the initial charge on the capacitor? (1 mark)
ii.) What is the current through the resistor when the discharge starts? (3 marks)

QUESTION 2 (20 MARKS)

a.) Give two properties of magnetism. (2 marks)
b.) An electron moves into a region of uniform magnetic field \mathbf{B} of magnitude 4.55 X $10^{-4} \mathrm{~T}$. The angle between the directions of \mathbf{B} and the electron's velocity \mathbf{V} is 65.5^{0}. If this electron creates a force of $1.32 \times 10^{-20} \mathrm{~N}$; determine
i.) The velocity of motion of this charge. (3 marks)
ii.) The radius it can execute in the field if the path is circular. (3 marks)
c.) i.) State Ampere's law. (1 mark)
ii.) Fig 2 below shows cross-section of a long conducting cylinder with inner radius $\mathrm{a}=1 \mathrm{~cm}$ and outer radius $\mathrm{b}=3 \mathrm{~cm}$. The cylinder carries a current out of the page and the current density in the cross-section is given as $\mathrm{J}=\mathrm{pr}^{2}$ where $\mathrm{p}=$ $3.0 \times 10^{6} \mathrm{~A} / \mathrm{m}^{4}$ and r is in meters. Show that the current enclosed;

$$
\mathrm{i}_{\mathrm{encl} .}=\frac{\pi p}{2}\left(r^{4}-a^{4}\right)(4 \text { marks })
$$

Hence find the magnetic field B at a point that is 3 cm from the central axis of the cylinder? (5 marks)

Fig 2
d.) State Kirchoff's voltage and current laws. (2 marks)

QUESTION 3 (20 MARKS)

a.) State Faraday's law. (1 mark)
b.) Show that the amount of charge q at any time t for a discharging capacitor is given as

$$
\mathrm{q}=\mathrm{Q}_{\mathrm{o}} \mathrm{e}^{-t / R C}
$$

Where symbols have their usual meaning.
Hence sketch a graph of charge q versus time t for a discharging capacitor. (5 marks)
c.) In fig 3 below what is the net potential in terms of charge q and distance d at point P due to the four point charges if $\mathrm{V}=0$ at infinity?

d.) i.) State Ohm's law. (1 mark)
ii.) State a characteristic plot of an Ohmic conductor. (2 marks)
e.) Fig 4 below shows a circuit whose elements have the following values;
$\mathrm{E}_{1}=3.0 \mathrm{~V}, \mathrm{E}_{2}=6.0 \mathrm{~V}, \mathrm{R}_{1}=2.0 \Omega$ and $\mathrm{R}_{2}=4.0 \Omega$.
The three batteries are ideal. Find the magnitude and direction of the current in each of the three batteries.

QUESTION 4 (20 MARKS)

a.) The current in a wire varies with time according to the relation

$$
\mathrm{i}=4+2 \mathrm{t}^{2}
$$

Where i is in amperes and t in seconds.
i.) How many coulombs pass across section of the wire in the time interval between $\mathrm{t}=5 \mathrm{~s}$ and $\mathrm{t}=10 \mathrm{~s}$? (4 marks)
ii.) What constant current would transport the same charge in the same time interval? (3 marks)
b.) Show quantitatively that electric flux through a surface enclosing a charge is independent of the size of surface (or distance from the charge). (4 marks)
c.) Give two sources of energy losses in a transformer. (2 marks)
d.) Three charges $\mathrm{q}_{1}=\mathrm{q}_{2}=3 \mu \mathrm{C}$ and $\mathrm{q}_{3}=-2 \mu \mathrm{C}$ are placed as shown in figure 5 below. The distance between the charges q_{1} and q_{2} and q_{1} and q_{3} is $0.015 m$.
Calculate force on q_{1}.

Fig 5
e.) Show that potential energy U created by moving a negative charge a distance r from a positive charge is given as;

$$
\mathrm{U}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{r}(3 \mathrm{marks})
$$

