KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: PHYS 110

COURSE TITLE: ELECTRICITY & MAGNETISM

STREAM: SESSION I

DAY: SATURDAY

TIME: 2.00 - 4.00 P.M.

DATE: 10/04/2010

INSTRUCTIONS:

Instructions

- Answer question 1 and ANY other TWO
- You may need the following constants where necessary: $\pi = 3.14 \; ; \; \epsilon_0 = 8.8541878176 \times 10 12 \; \text{F/m} \; , \; g = 9.81 \; \text{ms}^{-2}, \\ \mu_0 = 4\pi \times 10^{-7} \; \text{N} \cdot \text{A}^{-2}.$

PLEASE TURN OVER

QUESTION 1 (30 MARKS)

- (a) Briefly explain the origin of magnetism in materials (2 marks)
- (b) Explain the diamagnetism and relate it to its application in magnetic levitation. (3 marks)
- (g) Explain why a potentiometer can be referred to as a voltmeter with infinite resistance. (3 marks)
- (j) A strip of copper carrying a current I is placed within a magnetic field \underline{B} . State TWO forces experienced by the electrons inside the copper strip. (2 marks)
- (k) Calculate the magnetic field at a point 2 mm from an infinitely long conductor carrying a current of 4 A. (3 marks)
- (c) (i) State coulomb's law of charges. (2 marks)
 - (ii) Three charges are distributed in a right angled manner as shown below.

Determine the force exerted on 5 μ C by the other two charges. (5 marks)

(f) Derive charging equation of an RC circuit, hence for the circuit in figure 2 the amount of current that would flow 10 ms after the switch is turned on.

(5 marks)

- (g) Distinguish between hard and soft magnetic materials (2 marks)
- (i) From Ampere's law, show that the magnetic field of a wire loop of radius r and carrying a current *I* can be expresses as (3 marks)

$$B = \frac{\mu_o I}{2\pi r}$$

QUESTION 2 (20 MARKS)

- (a) Compare the properties of gravitational forces with those of electrostatic forces. (8 marks)
- (b) Two spheres separated by a distance d carry a charge of +46 μ C and -30 μ C.
 - (i) State what will happen to the charges on the sphere if they are made to touch each other and then returned to their original positions.
 - (ii) Determine the ratio $\frac{F_1}{F_2}$, where F_1 and F_2 are the forces between the two spheres before and after contact respectively. (6 marks)
- (c) Four charges have been placed on the corners of a square 50 cm on each edge as shown in figure 3. Calculate the NET force on the $+3 \mu C$. (6 marks)

Figure 3.

QUESTION 3 (20 MARKS)

- (a) Derive a general expression for the total resistance of a circuit for n resistors connected in parallel, hence determine the total power dissipated by a network of three parallel resistors of 4 Ω , 6 Ω and 10 Ω connected to a 12 V power supply. (8 marks)
- (b) (i) State Kirchhoff's circuit laws (2 marks) (ii) Find currents in all the resistors in figure 4. (10 marks)

QUESTION 4 (20 MARKS)

- (a) (i) Give four factors that affect the magnitude of induced magnetic flux in a coil. (4 marks)
 - (ii) Show that the emf induced by a rotating coil is of the form $E = E_0 \sin \omega t \qquad (6 \text{ marks})$
- (b) (i) Explain why utility companies prefer to transport power over long distances at high voltages.
 - (ii) Why should AC be used on transformers and not DC?
 - (iii) Suppose 10 MW of power is being transported over a power line that has a resistance of 0.200Ω . How much power is lost along the line if the voltage of the line is (a) 240 V, (b) 24,000 V? (10 marks)

QUESTION 5 (20 MARKS)

- (a) Describe the operation of a Wheatstone Bridge (7 marks)
- (b) Figure 5 shows a parallel plate capacitor with a conductor of thickness *a* inserted in between. Show for this arrangement, the capacitance can be expressed as

$$C = \frac{\varepsilon_0 A}{d - a}$$
, where *A* is the area of the capacitor plates. (5 marks)

Figure 5.

- (C) (i) State Thevenin's theorem.
 - (ii) Reduce the circuit below to Thevenin equivalent taking $20~\Omega$ resistor as the load, hence find the current through the load. (6 marks)

(2 marks)

