KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

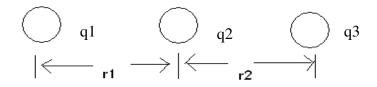
FOR THE CERTIFICATE OF PRE-UNIVERSITY PHYSICS

COURSE CODE: PPHYS 011

COURSE TITLE: ELECTRICITY, MAGNETISM & MODERN PHYSICS

STREAM: SEMESTER ONE

- DAY: TUESDAY
- TIME: 9.00 11.00 A.M.


DATE: 15/03/2011

Answer QUESTION 1 and ANY OTHER TWO You may need the following constants: Electronic charge $e = 1.6 \times 10^{-19}$ C. $\pi = 3.14$ $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m $\mu_0 = 4\pi \times 10^{-7}$ Tm/A

PLEASE TURN OVER

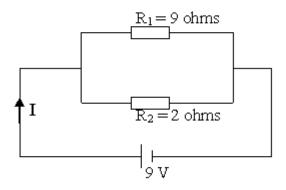
Question 1 (30 marks)

- (a) State any 4 properties of charge (4 marks)
- (b) Explain how lightning conductors discharge the clouds. (2 marks)
- (c) Three point charges, $q_1 = -4 \ \mu\text{C}$, $q_2 = 5 \ \mu\text{C}$, and $q_3 = 1 \ \mu\text{C}$, are placed as in Figure below.

If $r_1 = 0.5$ mm and $r_3 = 0.8$ mm, find the force on q_2 due to the other two charges.

(5 marks)

(e)	Sketch	Sketch a graph illustrating dependence of resistance on length l of a wire									
	conductor keeping cross sectional area constant. (3 marks)										
(f)	State three transformer losses. (3 marks)										
(h)	(i)	Explain the term "work function" of a metal	(2 marks)								
	(ii)	of 5739 years. If the ¹⁴ C content of an old piece of wood is	The ¹⁴ C content decreases after the death of a living system with a half-life 5739 years. If the ¹⁴ C content of an old piece of wood is found to be 0.5% of that of an equivalent present-day sample, how old is the piece of								
(i)	If the distance between two equal point charges is doubled, and their indi- charges are also doubled, what would happen to the force between them? your working. (3 ma										


(j)	i.	Define
		I. Fusion
		II. Fission
	ii.	Complete the following reactions (<i>use the periodic table where applicable</i>)
		uppicuoie)

I
$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + __{+} + v$$
 (2 marks)
II. ${}_{0}^{1}n + {}_{92}^{235}H \rightarrow {}_{56}^{141}Ba + __{+} + {}_{0}^{1}n$ (2 marks)

Question 2 (20 marks)

(a)	Defin	e Electric current. Give its Symbol and SI unit	(3 marks)
(b)	(i) (ii)	State ohm's law Write the general expression for the total resistance for connected in parallel.	(2 marks or N resistors (2 marks)

- c) For the circuit below,
 - compute the total resistance (6 marks) i) (7 marks)
 - ii) the current I

Question 3 (20 marks)

(a)	Define Capacitance (2 marks)									
(b)	Sketcl	h charging and discharging curves of a capacitor.	(4 marks)							
(c)	(i)	Derive an expression for equivalent capacitance for a circu capacitors C_1 , C_2 , and C_3 connected in series.	it with (5 marks)							
	(ii)	A potential difference of 12 volts is connected to a $2\mu C$ and parallel.								
		I. Calculate the charge on each capacitor	(3 marks)							
		II. Total circuit capacitance C _{eq}	(3 marks)							
		III. Total energy stored by the capacitors,	(3 marks)							
Quest	tion 4 (2	<u>20 marks)</u>								

(i) (2 marks) Define half life of a radioactive material Explain the three types of radioactive decay processes giving examples of each. (ii) (6 marks)

Derive half-life $(T_{\frac{1}{2}})$ equation for radioactive material. Hence show that the decay (iii) law can be expressed as:

$$N = N_o e_{\text{Page 3 of 5}}^{-(\ln 2/T_{\frac{1}{2}})t}$$

	where	N = number of nuclei present at any time t,	
		$N_o = initial$ number of nuclei.	
(iv)	An isotope has	s 2.665 x 10^{21} particles. Its decay rate is 3.70 x 10^{10}	(8 marks) ⁹ particles/sec.
		constant fe of the isotope	(2 marks) (2 marks)

Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		2
1	H																	He
2	3	4											5	6	7	8	9	10
2	Li	Be											В	С	N	0	F	Ne
3	11	12											13	14	15	16	17	18
0	Na	Mg											AI	Si	Р	S	CI	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	87	88	89	104	105	106	107	108	109	110	111	112						
1	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Ср						
							(()		0							

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr