

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE-UNIVERSITY PHYSICS

COURSE CODE: PPHYS 011

COURSE TITLE: ELECTRICITY, MAGNETISM & MODERN PHYSICS

STREAM: SEMESTER ONE

DAY: TUESDAY

TIME: 9.00 - 11.00 A.M.

DATE: 07/12/2010

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions. Question One carries **30marks** while each of the other Two Questions carry **20marks**.
- The following constants may be useful

Use the following constants where necessary;

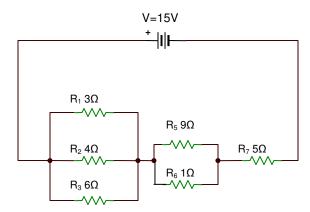
- Resistivity of copper $\rho = 1.8 \times 10^{-8} \Omega m$
- Mass of electron $m_e = 9.11 \times 10^{-34} Kg$
- Planck's constant $h = 6.63 \times 10^{-34} JS$
- Charge of electron $e = 1.6 \times 10^{-19} C$

PLEASE TURN OVER

QUESTION 1 (30 marks)

g) State three properties used to detect X-rays.

a) Define the following terms i). Electric current ii). Resistance iii). Electromotive force	(3mks)
 i) State and explain any two factors that affect the resistance of a metallic con ii) A rectangular block of copper has dimensions 2.5cm by 2.5cm by 40cm. F resistance of the block between the two square ends. 	(2mks)
c) i) State Ohm's law. ii) Three resistors of resistance 3Ω , 4Ω , and 5Ω , are connected in parallel to supply. Calculate; I. Total resistance II. Current through the 4Ω resistor	(1mk) source of 12V (3mks) (3mks)
d) State two differences between magnetic fields and electric fields	(2mks)
 e) i) State and explain three factors that affect the magnitude of induced e.m.f. ii) A square solenoid with 500 turns and sides 5cm by 5cm is placed in air with perpendicular to a uniform magnetic flux density of 0.8T. Calculate the indufield decreases to zero in 4 seconds. 	
f) i) What is wave – particle duality? ii) The speed of a particle is $180 Km/hr$. Calculate its wavelength if it has a magnitude of the control of the con	(1mk) ass of 0.0025Kg


(**3mks**)

QUESTION 2 (20 marks)

a) i) State an instrument which can be used to measure current.

(1mk)

ii) In the circuit below;

Calculate;

I.	Total resistance	(4mks)
II.	Total current	(3mks)
III.	Current through the 1 Ω resistor	(3mks)
IV.	Potential across the 4Ω resistor	(3mks)

- b) When a battery of electromotive force of 12V is connected to a load resistor of resistance 15, the terminal voltage is measured to be 10V. Find the internal resistance of the battery (4mks)
- c) A 1.2KW electric kettle uses a 250V mains supply. Calculate the current drawn.

(2mks)

QUESTION 3 (20 marks)

a) i) State two types of magnets

(2mks)

ii) State three characteristics of magnetic field lines

(3mks)

- b) i) State and explain two factors affecting the magnitude of magnetic force on a current carrying conductor in a magnetic field. (2mks)
- ii) A wire carrying a current of 6.4A from left to right of page has 2m of its length in a uniform magnetic field of magnetic flux density $2.5 \times 10^{-4} T$ directed vertically into the page. Determine;
 - I. the direction of force experienced

(1mk)

II. the magnitude of the force experienced

c) i) State Lenz's law in words and give its mathematical expression.

(2mks)

- ii) A wire of length 50cm is moved at a speed of 20m/s through a uniform magnetic field of strength 400T at an angle of 30° to the field. Calculate the e.m.f induced in the wire. (3mks)
- d) i) Define r.m.s. value of alternating current.

(1mk)

ii) A bulb in a house is rated 60W, 240V. Calculate its maximum current

(3mks)

QUESTION 4 (20 marks)

a) Differentiate between the following

(2mks)

- i). Absorption and emission spectra
- ii). Nuclear fission and fusion
- b) i) Name the particles of an atom and state their charges

(3mks)

ii) A nuclide notation is written as

$$_{Z}^{A}X$$

State what the symbols; A, Z and X stands for.

(**3mks**)

c) i) State three radiations which can be produced in a radioactive decay (3mks)

ii) A radioactive element decays to form a stable nuclide according to the equation

$$^{234}_{92}U \rightarrow ^{206}_{82}Pb + particles$$

Identify the number and type of radiations produced

(5mks)

d) i) Define half life a sample

(1mk)

ii) The half life of a certain sample is 25 minutes. Find how long it would take the sample to reduce its nuclides from 1200 to 37.5 (3mks)

QUESTION 5 (20 marks)

a) Define the following as used with photo electric effect

(**3mks**)

- i). Work function
- ii). Threshold frequency
- iii). Photons

b) i) State Einstein's equation of photo electric effect.

(1mk)

- ii) The work function of a metal surface is 5.4eV. Calculate,
- I. Threshold frequency

(3mks)

- II. The kinetic energy of photoelectrons produced if the metal is illuminated by radiation of frequency $1.8 \times 10^{15} Hz$. (4mks)
- III. The maximum velocity of photoelectrons produced

- c) Explain the functions of the following in the X-ray tube
 - i). Extra high tension voltage
 - ii). Vacuum
 - iii). Copper cooling fins
- d) Define the following as used with X-rays and state what each depends on (3mks)

- i). Intensity of X-rays
- ii). Quality of X-rays