KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE CERTIFICATE OF PRE- UNIVERSITY PHYSICS

COURSE CODE: PPHYS 011

COURSE TITLE: ELECTRICITY MAGNETISM & MODERN PHYSICS

- STREAM: SEMESTER ONE
- DAY: WEDNESDAY
- TIME: 9.00 11.00 A.M.
- DATE: 09/12/2009

INSTRUCTIONS:

Answer question ONE and any other two.

You may need the following constants:

 $\varepsilon_0 = 8.85 \times 10^{12} F / m$ $\mu_0 = 4\pi \times 10^{-7} Tm / A$ $h = 6.626 \times 10^{-34} m^2 kg / s$

PLEASE TURN OVER

Question ONE (30 marks)

(a)	(i)	Define electric current. Give its SI units	(3 marks)	
	(ii)	State how electrons can be made to move in a conduct	or. (2 marks)	
(1)	г 1		·	
(b)	Expla	in why if temperature in a conductor is increased, resista		
			(2 marks)	
(c)	Sketch the electric field lines of			
	(i)	Positive isolated point charge	(1 mark)	
	(ii)	Dipole	(2 marks)	
(d)	(i)	Define electric potential	(2 marks)	
	(ii)	Calculate the electric potential due to a 4 uC charge at	a point 2 mm away.	
			(3 marks)	
(e)	Illustrate the construction of the following types of capacitors			
	(i)	Aluminum foil	(3 marks)	
	(ii)	Mica	(3 marks)	
(f)	ying a current of 10 A at a			
			3 marks)	
(g)	State	why a voltmeter has a very high resistance	(2 marks)	
(h)	Define the following terms:			
	(i)	Photoelectric effect	(2 marks)	
	(ii)	Work function of a material	(2 marks)	

Question TWO (20 marks)

(a)	(i)	State (Ohm's law	(2 marks)	
	(ii)	Give t	he difference between Ohmic and non-ohmic mat	erials (3 marks)	
(b)	(i)	Define	e capacitance. Give its SI units.	(3 marks)	
	(ii)	You a	re provided with $2\mu F$, $3\mu F$ and $5\mu F$ capacitors.	Show mathematically	
		and di	nd diagrammatically how the capacitors can be combined to give		
		I.	10µ <i>F</i>	(4 marks)	
		II.	2.5µF	(4 marks)	
		III.	1.6µ <i>F</i>	(4 marks)	

Question THREE (20 marks)

(a) (i) With the aid of a diagram, explain the principle operation			of a
		galvanometer.	(7 marks)
	(ii)	State how a galvanometer can be converted into	
		I. an ammeter	(2 mark)
		II. a voltmeter	(2 mark)
	(iii)	Design a 0-10 A range ammeter with a FSD current of 1 mA and a coil resistance of 20 ohms.	
		(9 marks)	

Page **2** of **3**

Question FOUR (20 marks)

(a)	(i) (ii) (ii)	State the condition for photoelectric effect to occur Describe one application of photoelectric phenomena If a light with a frequency of radiation of 8×10^{14} Hz is sho photoelectrons are ejected with a maximum kinetic energy what is the work function of the material?	
			(5 marks)
(b)	Defin (i) (ii)	e radioactivity half-life of a radioactive material	(2 marks) (2 marks)
(c)	Deriv	e the half-life equation of a radioactive decay.	(6 marks)