KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 411

COURSE TITLE: ELECTROCHEMISTRY

- STREAM: SESSION VII & VIII
- DAY: SATURDAY
- TIME: 9.00 11.00 A.M.
- DATE: 28/11/2009

INSTRUCTIONS:

- F = 96500C/MOL
- Attempt <u>ALL</u> Questions
- Data 2.303RT/F =0.0592v at 25°C, F=96500Cmol⁻¹, 0°C= 273K, R=8.314Jmol⁻¹k⁻¹

PLEASE TURN OVER

Data 2.303RT/F =0.0592v at 25°C, F=96500Cmol ⁻¹ , 0°C= 273K, R=8.314Jmol ⁻¹ k ⁻¹		
1) a). Write down Kohlrausch law and define all the terms used	(2 mks)	
b). A conductivity cell has a resistance of 125 Ω when filled with 0.02M KCl at 298K and		
$5 \times 10^4 \Omega$ when filled with 6×10^{-5} M NH ₄ OH. The specific conductivity of 0.02M KCl is		
$2.77 \times 10^{-3} \Omega^{-1} \text{cm}^{-1}$ and the equivalent conductances of NH ₄ ⁺ and OH ⁻ at an infinite dilution		
are 73.4 and $198\Omega^{-1}$ cm ² mol ⁻¹ respectively. Calculate,		
i). the cell constant (2 mks)	
ii). the degree of dissociation of NH_4OH in the $6 \times 10^{-5}M$ solution (3 mks)	
iii). the dissociation constant of NH_4OH at 298K (3 mks)	
c). Define the term transport number of an ion and explain how it can be determined experimentally		
by moving boundary method	(5 mks)	
d). In a moving boundary experiment to determine the cation transport number in 0.01 mol dm ⁻³		
KCl solution a current of 800μ A caused the boundary to move a distance of 3.5cm in 1207s.	Calculate	
the transport number of both ions. The radius of the tube was 0.191cm.	4 mks)	
2. a) Describe the Debye – Huckel model for the structure of electrolyte solution. (2 mks)		
b) In dilute solution, the Debye – Huckel theory reduces to the following expression for activity		
coefficient of ion; $\log \gamma_i = -QZ_i^2 \sqrt{\mu}$ where;		
Q = 0.511 for water at 25°C		
Z_i = formal charge on ion i		
μ = ionic strength of the solution		
i) Show that the general expression for the mean activity coefficient, γ_{\pm} , of the salt $A_{v+}B_{v-}$ is $\gamma_{\pm} = -QlZ_{+}Z_{-}l\sqrt{\mu}$	given by (2 mks)	
ii) Use the Debye – Huckel limiting law to calculate for 0.025 PbBr_2 aqueous solution at 25°C,		
I) The mean activity coefficient	(4 mks)	
II) The mean activity (3 mks)	
III) The activity (3 mks)	

Page **2** of **3**

- iii) What effect will increase in concentration of a solution bring on the value of the activity coefficient? (1mk)
- c) When current of 2A is passed through a column of solution of 0.2M AgCl, the velocity of Ag^+ ion was found to be $7x10^{-3}$ cm/sec. The ionic mobility of Li⁺ and Ag^+ ions are $4.01x10^{-8}M^2V^{-1}S^{-1}$ and $6.41x10^{-8}M^2V^{-1}S^{-1}$ respectively. Using the same apparatus and the same applied potential, calculate the velocity, in cm/sec of Li⁺ ions in a 0.2M LiNO₃. (3 mks)
- 3. a) Define the term reference electrode. (1mk)
 - b) Write down the electrode reactions and the overall cell reaction. Calculate the cell potential for the cell Ni/Ni²⁺(0.1M)/1M Ag⁺/Ag given that $E^{o} Ag^{+}, Ag = 0.8V$ and $E^{o} Ni^{2+}, Ni = -0.23V$. (4 mks)
 - c) The standard emf of the cell Ag/AgBr/AgBr/Ag is -0.726V at 298K. Use this information to calculate the solubility product of silver bromide in water.
 (3 mks)
 - d) The following cell was set up:

Hg (1) /Hg₂Br_{2(s)}/KBr (0.001M): KBr (0.01M)/Hg₂Br_{2(s)}/Hg(1)

i)	Write the equations for all the processes taking place and net cell reaction.	(2 mks)
ii)	Derive an equation for emf of this cell at 25°C	(3 mks)

- iii) Calculate the emf of this cell at 25°C, if t₊ is 0.4 for the KBr solution and the mean activity coefficient is 0.6 and 1 for 0.01M and 0.001M KBr solution respectively. (3 mks)
- iv) Calculate the emf of this cell if there was no liquid junction potential. (2 mks)
- v) Determine the value of the liquid junction potential. (1 mk)
- 4. a) The emf (E) and the derivative (δE/δT)_p of the cell Pb/PbBr_{2(s)}, KBr(aq),AgBr_(s)/Ag are 0.492 V and 0.000186 VK⁻¹ respectively.
 i) Write down the cell reaction for the above cell. (1 mk)
 - ii) Calculate ΔG , ΔH and ΔS at 27 °C (7 mks)
 - b) Briefly outline the principle underlying polarography and its applications (6 mks)