



# UNIVERSITY

# UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 411

COURSE TITLE: ELECTROCHEMISTRY

STREAM: SESSION VII & VIII

DAY: SATURDAY

TIME: 9.00 - 11.00 A.M.

DATE: 28/11/2009

#### **INSTRUCTIONS:**

- F = 96500C/MOL
- Attempt <u>ALL</u> Questions
- Data 2.303RT/F =0.0592v at 25°C, F=96500Cmol<sup>-1</sup>, 0°C= 273K, R=8.314Jmol<sup>-1</sup>k<sup>-1</sup>

### PLEASE TURN OVER

## Data 2.303RT/F =0.0592v at 25°C, F=96500Cmol<sup>-1</sup>, 0°C= 273K, R=8.314Jmol<sup>-1</sup>k<sup>-1</sup>

- 1) a). Write down Kohlrausch law and define all the terms used (2 mks)
  - b). A conductivity cell has a resistance of 125  $\Omega$  when filled with 0.02M KCl at 298K and  $5\times10^4~\Omega$  when filled with  $6\times10^{-5}$ M NH<sub>4</sub>OH. The specific conductivity of 0.02M KCl is  $2.77\times10^{-3}\Omega^{-1}$ cm<sup>-1</sup> and the equivalent conductances of NH<sub>4</sub><sup>+</sup> and OH<sup>-</sup> at an infinite dilution are 73.4 and  $198\Omega^{-1}$ cm<sup>2</sup>mol<sup>-1</sup> respectively. Calculate,
    - i). the cell constant (2 mks)
    - ii). the degree of dissociation of  $NH_4OH$  in the  $6\times10^{-5}M$  solution (3 mks)
    - iii). the dissociation constant of NH<sub>4</sub>OH at 298K (3 mks)
  - c). Define the term transport number of an ion and explain how it can be determined experimentallyby moving boundary method (5 mks)
  - d). In a moving boundary experiment to determine the cation transport number in 0.01mol dm<sup>-3</sup> KCl solution a current of  $800\mu$ A caused the boundary to move a distance of 3.5cm in 1207s. Calculate the transport number of both ions. The radius of the tube was 0.191cm. (4 mks)
- 2. a) Describe the Debye Huckel model for the structure of electrolyte solution. (2 mks)
  - b) In dilute solution, the Debye Huckel theory reduces to the following expression for activity coefficient of ion;  $\log \gamma_i = -Q Z_i^2 \sqrt{\mu}$  where;

Q = 0.511 for water at 25°C

 $Z_i$  = formal charge on ion i

 $\mu$  = ionic strength of the solution

- i) Show that the general expression for the mean activity coefficient,  $\gamma_{\pm}$ , of the salt  $A_{v+}B_{v-}$  is given by  $\gamma_{\pm} = -QlZ_{+}Z.l\sqrt{\mu}$  (2 mks)
- ii) Use the Debye Huckel limiting law to calculate for 0.025 PbBr<sub>2</sub> aqueous solution at 25°C,
  - I) The mean activity coefficient (4 mks)
  - II) The mean activity (3 mks)
  - III) The activity (3 mks)

|                                                                                                                                                 | iii) | What effect will increase in concentration of a solution bring on the value of the action coefficient?                                                     | ivity<br>(1mk)                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| c) When current of 2A is passed through a column of solution of 0.2M AgCl, the velocity of A                                                    |      |                                                                                                                                                            | Ag <sup>+</sup> ion              |
| was found to be $7x10^{-3}$ cm/sec. The ionic mobility of Li <sup>+</sup> and Ag <sup>+</sup> ions are $4.01x10^{-8}$ M $^2$ V $^{-1}$ S        |      |                                                                                                                                                            | <sup>1</sup> S <sup>-1</sup> and |
| 6.41x10 <sup>-8</sup> M <sup>2</sup> V <sup>-1</sup> S <sup>-1</sup> respectively. Using the same apparatus and the same applied potential, can |      |                                                                                                                                                            | calculate                        |
|                                                                                                                                                 | the  | velocity, in cm/sec of Li <sup>+</sup> ions in a 0.2M LiNO <sub>3</sub> .                                                                                  | (3 mks)                          |
| 3. a)                                                                                                                                           | Defi | ne the term reference electrode.                                                                                                                           | (1mk)                            |
| b) Write down the electrode reactions and the overall cell reaction. Calculate the cell potential                                               |      |                                                                                                                                                            | al for the                       |
|                                                                                                                                                 | cell | $Ni/Ni^{2+}(0.1M)/1M Ag^{+}/Ag$ given that $E^{o} Ag^{+}, Ag = 0.8V$ and $E^{o}Ni^{2+}, Ni = -0.23V$ .                                                     | (4 mks)                          |
| c) The standard emf of the cell Ag/AgBr/AgBr/Ag is -0.726V at 298K. Use this information to calcula                                             |      |                                                                                                                                                            | o calculate                      |
| t                                                                                                                                               | he s | olubility product of silver bromide in water.                                                                                                              | (3 mks)                          |
| d) The following cell was set up:                                                                                                               |      |                                                                                                                                                            |                                  |
|                                                                                                                                                 | Н    | g <sub>(1)</sub> /Hg <sub>2</sub> Br <sub>2(s)</sub> /KBr (0.001M): KBr (0.01M)/Hg <sub>2</sub> Br <sub>2(s)</sub> /Hg <sub>(1)</sub>                      |                                  |
| i)                                                                                                                                              | W    | rite the equations for all the processes taking place and net cell reaction.                                                                               | (2 mks)                          |
| ii                                                                                                                                              | ) D  | erive an equation for emf of this cell at 25°C                                                                                                             | (3 mks)                          |
| ii                                                                                                                                              | -    | alculate the emf of this cell at 25°C, if $t_{+}$ is 0.4 for the KBr solution and the mean activ 0.6 and 1 for 0.01M and 0.001M KBr solution respectively. | ity coefficient (3 mks)          |
| iv                                                                                                                                              | ') C | alculate the emf of this cell if there was no liquid junction potential.                                                                                   | (2 mks)                          |
| v)                                                                                                                                              | ) D  | etermine the value of the liquid junction potential.                                                                                                       | (1 mk)                           |
|                                                                                                                                                 |      |                                                                                                                                                            |                                  |
| 4. a) The emf (E) and the derivative $(\delta E/\delta T)_p$ of the cell Pb/PbBr <sub>2(s)</sub> , $KBr(aq)$ , $AgBr_{(s)}/Ag$ are 0.492 V      |      |                                                                                                                                                            |                                  |
| and - 0.000186 VK <sup>-1</sup> respectively.                                                                                                   |      |                                                                                                                                                            |                                  |
| i                                                                                                                                               | ) W1 | rite down the cell reaction for the above cell.                                                                                                            | (1 mk)                           |
| i                                                                                                                                               | i) C | alculate $\Delta G$ , $\Delta H$ and $\Delta S$ at 27 °C                                                                                                   | (7 mks)                          |

(6 mks)

b) Briefly outline the principle underlying polarography and its applications