UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE COURSE CODE: CHEM 411

COURSE TITLE: ELECTROCHEMISTRY
STREAM: SESSION VII \& VIII

DAY:
TIME:
DATE:

INSTRUCTIONS:

- $\mathrm{F}=96500 \mathrm{C} / \mathrm{MOL}$
- Attempt ALL Questions
- Data 2.303RT/F $=0.0592 \mathrm{v}$ at $25^{\circ} \mathrm{C}, \mathrm{F}=96500 \mathrm{Cmol}^{-1}, 0^{\circ} \mathrm{C}=273 \mathrm{~K}, \mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{k}^{-1}$

Data 2.303RT/F $=0.0592 \mathrm{v}$ at $25^{\circ} \mathrm{C}, \mathrm{F}=96500 \mathrm{Cmol}^{-1}, 0^{\circ} \mathrm{C}=273 \mathrm{~K}, \mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{k}^{-1}$

1) a). Write down Kohlrausch law and define all the terms used
b). A conductivity cell has a resistance of 125Ω when filled with 0.02 M KCl at 298 K and $5 \times 10^{4} \Omega$ when filled with $6 \times 10^{-5} \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$. The specific conductivity of 0.02 M KCl is $2.77 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$ and the equivalent conductances of $\mathrm{NH}_{4}{ }^{+}$and OH^{-}at an infinite dilution are 73.4 and $198 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate,
i). the cell constant
ii). the degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ in the $6 \times 10^{-5} \mathrm{M}$ solution
iii). the dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ at 298 K
c). Define the term transport number of an ion and explain how it can be determined experimentally by moving boundary method
d). In a moving boundary experiment to determine the cation transport number in $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ KCl solution a current of $800 \mu \mathrm{~A}$ caused the boundary to move a distance of 3.5 cm in 1207s. Calculate the transport number of both ions. The radius of the tube was 0.191 cm .
2. a) Describe the Debye - Huckel model for the structure of electrolyte solution.
b) In dilute solution, the Debye - Huckel theory reduces to the following expression for activity coefficient of ion; $\log \gamma_{i}=-Q Z_{i}^{2} \sqrt{ } \mu$ where;

$$
\begin{aligned}
& \mathrm{Q}=0.511 \text { for water at } 25^{\circ} \mathrm{C} \\
& \mathrm{Z}_{\mathrm{i}}=\text { formal charge on ion } \mathrm{i} \\
& \mu=\text { ionic strength of the solution }
\end{aligned}
$$

i) Show that the general expression for the mean activity coefficient, $\gamma_{ \pm}$, of the salt $\mathrm{A}_{v+} \mathrm{B}_{\mathrm{v}-}$ is given by $\gamma_{ \pm}=-\mathrm{QlZ}_{+} \mathrm{Z} . \mathrm{I}{ }^{\mu} \mu$
ii) Use the Debye - Huckel limiting law to calculate for $0.025 \mathrm{PbBr}_{2}$ aqueous solution at $25^{\circ} \mathrm{C}$,
I) The mean activity coefficient
II) The mean activity
III) The activity
iii) What effect will increase in concentration of a solution bring on the value of the activity coefficient?
c) When current of 2 A is passed through a column of solution of 0.2 M AgCl , the velocity of Ag^{+}ion was found to be $7 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$. The ionic mobility of Li^{+}and Ag^{+}ions are $4.01 \times 10^{-8} \mathrm{M}^{2} \mathrm{~V}^{-1} \mathrm{~S}^{-1}$ and $6.41 \times 10^{-8} \mathrm{M}^{2} \mathrm{~V}^{-1} \mathrm{~S}^{-1}$ respectively. Using the same apparatus and the same applied potential, calculate the velocity, in $\mathrm{cm} / \mathrm{sec}$ of Li^{+}ions in a $0.2 \mathrm{M} \mathrm{LiNO}_{3}$.
3. a) Define the term reference electrode.
b) Write down the electrode reactions and the overall cell reaction. Calculate the cell potential for the cell $\mathrm{Ni} / \mathrm{Ni}^{2+}(0.1 \mathrm{M}) / 1 \mathrm{M} \mathrm{Ag}^{+} / \mathrm{Ag}$ given that $\mathrm{E}^{\mathrm{o}} \mathrm{Ag}^{+}, \mathrm{Ag}=0.8 \mathrm{~V}^{2}$ and $\mathrm{E}^{\circ} \mathrm{Ni}^{2+}, \mathrm{Ni}=-0.23 \mathrm{~V}$. (4 mks)
c) The standard emf of the cell $\mathrm{Ag} / \mathrm{AgBr} / \mathrm{AgBr} / \mathrm{Ag}$ is -0.726 V at 298 K . Use this information to calculate the solubility product of silver bromide in water.
d) The following cell was set up:

$$
\mathrm{Hg}_{(\mathrm{l})} / \mathrm{Hg}_{2} \mathrm{Br}_{2(\mathrm{~s})} / \mathrm{KBr}(0.001 \mathrm{M}): \mathrm{KBr}(0.01 \mathrm{M}) / \mathrm{Hg}_{2} \mathrm{Br}_{2(\mathrm{~s})} / \mathrm{Hg}_{(\mathrm{l})}
$$

i) Write the equations for all the processes taking place and net cell reaction.
ii) Derive an equation for emf of this cell at $25^{\circ} \mathrm{C}$
iii) Calculate the emf of this cell at $25^{\circ} \mathrm{C}$, if t_{+}is 0.4 for the KBr solution and the mean activity coefficient is 0.6 and 1 for 0.01 M and 0.001 M KBr solution respectively.
iv) Calculate the emf of this cell if there was no liquid junction potential.
v) Determine the value of the liquid junction potential.
4. a) The emf (E) and the derivative $(\delta \mathrm{E} / \delta \mathrm{T})_{\mathrm{p}}$ of the cell $\mathrm{Pb} / \mathrm{PbBr}_{2(\mathrm{~s})}, \mathrm{KBr}(\mathrm{aq}), \mathrm{AgBr}_{(\mathrm{s})} / \mathrm{Ag}$ are 0.492 V and $-0.000186 \mathrm{VK}^{-1}$ respectively.
i) Write down the cell reaction for the above cell.
ii) Calculate $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ at $27^{\circ} \mathrm{C}$
b) Briefly outline the principle underlying polarography and its applications

