KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

EDUCATION SCIENCE

COURSE CODE: CHEM 411

- COURSE TITLE: ELECTROCHEMISTRY
- STREAM: Y4S1
- DAY: MONDAY
- TIME: 2.00 4.00 P.M.
- DATE: 07/12/2009

INSTRUCTIONS:

- ► F= 96500C/MOL
- Answer ALL QUESTIONS

PLEASE TURN OVER

Q1. a) Define the following terms:

i)	Specific conductance	[2mks]
ii)	solubility product	[2mks]
iii)	Molar conductivity	[2mks]
iv)	Transference number	[2mks]

- b) The measured resistance of a cell containing 0.1M KCl solution at 25°C was found to be 3468.9 ohms, the specific conductance was 0.012856hm⁻¹cm⁻¹ at 25°C. A 0.1M solution of another substance in the same cell had a resistance of 4573.5 ohms. Calculate the molar conductance of this electrolyte at the given concentration
- c) The molar conductance of sodium acetate, hydrochloric acid and sodium chloride at infinite dilution are 91.0, 426.16 and 126.45 ohm⁻¹ cm² mol⁻¹ respectively. Calculate the molar conductance at infinite dilution of acetic acid. [2mks]
- Q2. a) (i) State Ohm's law [1mk]

(ii) Calculate the E M F of the cell:

 $Zn /Zn^{2+} (1M) // Ag+ (1M)/Ag$ given E° $Zn^{2+}/Zn = -0.762$

$$E^{\circ} Ag^{+}/Ag = 0.8 \qquad [4mks]$$

[5mks]

- b) State the distinction between a galvanic cell and an electrolytic cell. [2mks]
- c) In a certain experiment the emf of the cell is found to be 0.54 V at 25 °C, suppose that $[Zn^{2+}] = 1M$ and $P_{H2} = 1.0$ atm.

Calculate the molar concentration of H^+ given the standard emf of the cell as 0.76V.

The equilibrium constant at 25° C for the reaction

$$Zn(s) + 2H_{(aq)}^{+}(?) = Zn^{2+}_{(aq)}(1M) + H_{2(aq)}(1atm)$$
 [6mks]

d) When a silver- silver chloride and calomel electrode are incorporated in the same cell the reaction taking place as the cell supplies current is

$$Ag(s) + 1/2Hg_2Cl_2(s) = Hg(l) + AgCl_2(s)$$

The emf of the cell is 0.0455V at 998K and the temperature coefficient $(\delta E / \delta T)$ is 5.0x10⁻⁵ VK⁻¹. Calculate ΔG , ΔS and ΔH for the reaction. [6mks]

- Q3. a) The specific conductivity of a saturated solution of silver chloride after subtracting the specific conductivity of water is 2.28 x 10⁻⁶ ohm⁻¹cm⁻¹. If the ionic molar conductivities of Ag⁺ and Cl⁻ are 62 and 76 Ohm⁻¹ cm² mol⁻¹ respectively, calculate
 - i) The solubility of silver chloride. [4mks]
 - ii) The solubility product of silver chloride at 298K. [2mks]
 - b) A conductivity cell has a resistance of 250 ohms when filled with 2 $\times 10^{-2}$ mol/L KCl at 298K and resistance of 10^5 ohms when filled with 6 x 10^{-5} M NH₄OH solution. The specific conductivity of 2 x 10^{-2} M KCl is 2.77x 10^{-3} ohm⁻¹cm⁻¹and the ionic molar conductivities of NH₄⁺ and OH⁻¹are 73.4 and 198 ohm⁻¹cm⁻¹mol⁻¹ respectively. Calculate
 - i) The cell constant [3mks]
 - ii) The dissociation/ ionization constant of NH₄OH [7mks]
 - iii) The pH of the base [3mks]
- Q4. a). What is the ionic mobility of $SO_4^{2^-}$ ions in solution at infinite dilution given the ionic conductivity of the ions as $\lambda_{so4}^{\infty} = 159.6 \text{ Ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ [4mks]
 - b). In a moving boundary experiment with 0.1M KCl using 0.065M LiCl as indicator solution, a constant current of 0.05893 ampere was passed for 2180 s and the boundary was observed to move through 5.6 cm in a tube of 0.114258 cm² cross section calculate the transference number of the K⁺ and Cl⁻ ions [4mks]
 - c). AgNO3 solution containing 0.00739g of AgNO₃ per gm of H₂O is electrolysed between silver electrodes. During the experiment 0.078gm of Ag is deposited at the cathode. At the end of the experiment the anode portion contains 23.14gm of H₂O and 0.236gm of AgNO₃. What are the transport numbers of Ag⁺ and NO₃⁻ ions.
 Atomic masses; N= 14, Cu =63.5, O= 16 and Ag =108 [7mks]