KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: CHEM 411

COURSE TITLE: ELECTROCHEMISTRY

STREAM: SESSION VI & VII

DAY: WEDNESDAY

TIME: 2.00 – 4.00 P.M.

DATE: 12/08/2009

INSTRUCTIONS TO CANDIDATES:

F= 96500 C Answer ALL QUESTIONS

PLEASE TURN OVER

Q1. a) Define the following terms:

i)	An electrochemical cell	(2mks)
ii)	Ionic mobility	(2mks)
i)	Molar conductivity.	(2mks)

b) A conductivity cell has a resistance of 250 ohms when filled with $2 \times 10^{-2} \text{ mol/L}$ KCl solutionat 298K and resistance of 10^5 ohms when filled with 6×10^{-5} M NH₄OH solution. The specific conductivity of 2×10^{-2} M KCl is 2.77x 10^{-3} ohm⁻¹cm⁻¹and the ionic molar conductivities of NH₄⁺ and OH⁻¹are 73.4 and 198 ohm⁻¹cm²mol⁻¹ respectively. Calculate

- i) the cell constant [2mks]
- ii) the dissociation constant (Kb) of NH₄OH [7mks]
- c) The specific conductivity of a saturated solution of silver chloride (AgCl) is $3.6 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1}$ and that of water used in preparing the solution is $0.6 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1}$. If the molar conductivities at infinite dilution of Ag⁺ and Cl⁻ are 61.92 and 76 ohm⁻¹ cm² mol⁻¹

Calculate,

i) The solubility of AgCl

ii) The solubility product, Ksp, of AgCl. [6mks]

Q2. a) Give the differences between electronic and electrolytic conductors [4mks]

- b) State
 - (i) Kohlrausch's law of ionic mobility at infinite dilution [2mks]
 - (ii) Ohm's law [2mks]

c) State the distinction between a galvanic cell and an electrolytic cell [4mks]

d) Calculate the equilibrium constant at 25° for the reaction

$$Zn(s) + Cu^{2+}{}_{(aq)}(1M) = Cu(s) + Zn^{2+}{}_{(aq)}(1M) E^{\circ} = 1.1V$$
 [4mks]

- e) Calculate the transport number of H⁺ ions and Cl⁻ ions from the following data obtained by a moving boundary method using silver chloride as an indicator electrolyte. Atomic weight Ag=108
 - Concentration of HCl= 0.1M
 - Weight of Ag deposited in the coulometer = 0.13g
 - Boundary movement = 4.5 cm
 - Cross-section area = 1.25 sq. cm

[4mks]

Q3 a) When a silver- silver chloride and calomel electrode are incorporated in the same cell the reaction taking place as the cell supplies current is

Ag(s) + 1/2Hg₂Cl₂ (s) = Hg(l) + AgCl The EMF of the cell is 0.0455V at 998K and the temperature coefficient $(\frac{\delta E}{\delta T})$ is 5.0x10⁻⁵ VK⁻¹. Calculate ΔG , ΔS and ΔH for the reaction. [7mks]

- b) Give a suitable explanation as to why the resistance of a metal increases and that of an electrolyte solution decreases on raising the temperature. [3mks]
- a) The respective standard electrode potentials and the reaction taking place in the electrochemical cell is given as follows;

$$Cu/Cu^{2+}//Cl^{-}/Cl_{2}/Pt$$
 E°Cl/Cl⁻=1.36V
E°Cu²⁺/Cu =0.337V

Write down the cathode, anode and the net cell reaction of the cell and predict whether the reaction is spontaneous. [5mks]

- b) In a Hittorf experiment a student electrolyzed aqueous $AgNO_3$ using silver electrodes. The amount of $AgNO_3$ in the anode compartment before electrolysis was 0.228 g and after electrolysis it was 0.282 g. During electrolysis it was found that 0.019 g of Cu was deposited on copper coulometer connected in series to hittorf cell. Calculate the transport number of Ag^+ and NO_3^- Atomic masses; N= 14, Cu = 63.5, O= 16 and Ag = 108 [6mks]
- c) Explain briefly three factors that affect ionic mobility [6mks]d) Write brief notes on electrophoretic effect [2 mks]