

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR

 FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
COURSE CODE: CHEM 411

COURSE TITLE: ELECTROCHEMISTRY

STREAM:
 SESSION VIII

DAY:
TUESDAY
TIME:
2.00-4.00 P.M.

DATE:
06/04/2010

INSTRUCTIONS:

Attempt all questions
Data 2.303RT/F $=\mathbf{0 . 0 5 9 2}$ at $\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{F}=96500 \mathrm{Cmol}^{-1}, 0^{\circ} \mathrm{C}=\mathbf{2 7 3 K}, \mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

PLEASE TURN OVER

QUESTION 1

a) Define the following
i) Molar conductivity (1mk)
ii) Strong electrolyte (1mk)
iii) Reference electrode (1mk)
iv) Liquid junction potential
b) The molar conductivity of a strong electrolyte at $25^{\circ} \mathrm{C}$ was to be $109.9 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ for a concentration of $6.2 \times 10^{-3} \mathrm{molL}^{-1}$ and $106.1 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ for a concentration of $1.5 \times 10^{-2} \mathrm{molL}^{-1}$. Estimate the limiting molar conductivity of the electrolyte. (5mks)
c) i) State Kohlrausch law of independent ionic migration
ii) The specific conductance of a 0.05 M solution of ethanoic acid at $25^{\circ} \mathrm{C}$ is $4.4 \times 10^{-}$ ${ }^{4} \Omega^{-1} \mathrm{~cm}^{-1}$. The limiting molar conductivities of hydrogen ions and ethanoate ions are 310 and $77 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respetively. Calculate dissociation constant of ethanoic acid.

QUESTION 2

a) i) Write down an expression for ostwalds dilution law
ii) The resistances of aqueous acetic acid solution were measured at $25^{\circ} \mathrm{C}$ in a cell constant of $0.2063 \mathrm{~cm}^{-1}$. The following results were obtained.

C (moll-1)	0.00049	0.00099	0.00198	0.0158	0.06323	0.2529
$\mathrm{R}(\Omega)$	6146	4210	2927	1004	497	253

Where C is the concentration of acetic acid and R is the resistance. Plot a graph of $1 / \wedge_{\mathrm{m}}$ versus $\mathrm{C} \wedge_{\mathrm{m}}$ and hence determine
I) $\quad \mathrm{Ka}$
II) The degree of ionization of acetic acid at resistance of 2927Ω.
(13mks)
b) Given that the limiting molar conductivities of hydrochloric acid, sodium ethanoate and sodium chloride are $0.0426,0.0091$ and $0.01265 \Omega^{-1} \mathrm{M}^{2} \mathrm{Mol}^{-1}$ respectively, determine the limiting molar conductivity of ethanoic acid.

QUESTION 3

a) The emf and the derivative $(\delta \mathrm{E} / \delta \mathrm{T})_{\mathrm{P}}$ of the cell $\mathrm{Pb} / \mathrm{PbBr}_{2}(\mathrm{~s}), \mathrm{KBr}(\mathrm{aq}), \mathrm{Ag} / \mathrm{Br}(\mathrm{s}) / \mathrm{Ag}$ are 0.492 V and $-0.000186 \mathrm{VK}^{-1}$ respectively.
i) Write down the cell reaction for the above cell
ii) Calculate $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ at $27^{\circ} \mathrm{C}$.
b) Briefly outline the principle underlying potentiometric titration and its applications.
(6mks)

QUESTION 4

a) Define the term transport number of an ion
b) State three factors that determine motion of an ion in a solution
c) Briefly describe how transport number is determined experimentally by Hittorf method.
d) The following cell was set up;
$\mathrm{Hg}(\mathrm{l})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{NaCl}(0.001 \mathrm{M}): \mathrm{NaCl}(0.01 \mathrm{M})\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{Hg}(\mathrm{l})$
i) Write an equation for all the processes taking place and net cell reaction.
ii) Derive the equation for emf of this cell at $25^{\circ} \mathrm{C}$
iii) Calculate the emf of this cell at $25^{\circ} \mathrm{C}$, if t_{+}is 0.4 for NaCl solution and mean activity coefficient is 0.6 and 1 for 0.01 and 0.001 M NaCl solution respectively.
iv) Calculate what emf of this cell would be if there were no liquid junction potential.
v) Determine the value of the liquid junction potential

