KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: CHEM 411

- COURSE TITLE: ELECTROCHEMISTRY
- STREAM: SESSION VIII
- DAY: TUESDAY
- TIME: 2.00 4.00 P.M.
- DATE: 06/04/2010

INSTRUCTIONS:

Attempt all questions Data 2.303RT/F = 0.0592 at 25° C, F = 96500Cmol⁻¹, 0° C = 273K, R = 8.314Jmol⁻¹K⁻¹

PLEASE TURN OVER

QUESTION 1

a)	Define the following										
	i)	Molar	conductivi	ty					(1mk)		
	ii)	Strong	g electrolyte	e					(1mk)		
	iii)	Refere	ence electro	ode					(1mk)		
	iv)	Liquid	l junction p	otential					(1mk)		
b)	The molar conductivity of a strong electrolyte at 25° C was to be 109.9 Scm ² mol ⁻¹ for a concentration of 6.2x 10^{-3} molL ⁻¹ and 106.1 Scm ² mol ⁻¹ for a concentration of 1.5×10^{-2} molL ⁻¹ . Estimate the limiting molar conductivity of the electrolyte. (5mks)										
c)	i) Sta		(2mks)								
	ii) The specific conductance of a 0.05M solution of ethanoic acid at 25° C is 4.4 x10 ⁻⁴ Ω^{-1} cm ⁻¹ . The limiting molar conductivities of hydrogen ions and ethanoate ions are 310 and 77 Ω^{-1} cm ² mol ⁻¹ respetively. Calculate dissociation constant of ethanoic acid. (8mks)										
QI	JESTI	ON 2									
a) :	i) Write	e down a	an expressi	on for ostv	walds dilution	on law			(2mks)		
ii) The resistances of aqueous acetic acid solution were measured at 25°C in a cell constant of 0.2063 cm ⁻¹ . The following results were obtained.											
	C (m	oll-1)	0.00049	0.00099	0.00198	0.0158	0.06323	0.2529			
	R (Ω)	6146	4210	2927	1004	497	253			
	Where C is the concentration of acetic acid and R is the resistance. Plot a graph of										
	$1/_{m}$ versus C_{m} and hence determine										
	I)	Ka									
	II)	The de	gree of ion	ization of	acetic acid a	at resistanc	ce of 2927	Ω.	(13mks)		
b)	Given t and soc determ	hat the lium chi	limiting mo loride are (imiting mo	olar condu).0426, 0.0 olar condu	ctivities of 091 and 0.0 ctivity of et	hydrochlor)1265 Ω ⁻¹ N hanoic acid	ric acid, so ⁄I ² Mol ⁻¹ re d.	odium etha spectively	anoate ⁷ , (3mks)		

QUESTION 3

a) The emarca are 0.49	If and the derivative $(\delta E/\delta T)_P$ of the cell Pb/PbBr ₂ (s), KBr(aq), Ag/Br (s) $\Theta 2V$ and $-0.000186VK^{-1}$ respectively.	/Ag		
i)	Write down the cell reaction for the above cell	(1mk)		
ii)	Calculate $\Delta G, \Delta H$ and ΔS at 27°C.	(7mks)		
b) Briefly	outline the principle underlying potentiometric titration and its application	ons. (6mks)		
QUESTI	ON 4			
a) Define	the term transport number of an ion	(1mk)		
b) State t	hree factors that determine motion of an ion in a solution	(3mks)		
c) Briefly method	describe how transport number is determined experimentally by Hittorf	(3mks)		
d) The fol	llowing cell was set up;			
H	g (1) Hg ₂ Cl ₂ (s) NaCl (0.001M): NaCl (0.01M) Hg ₂ Cl ₂ (s) Hg(1)			
i)	Write an equation for all the processes taking place and net cell reaction	n. (2mks)		
ii)	Derive the equation for emf of this cell at 25°C	(4mks)		
iii)	Calculate the emf of this cell at 25° C, if t ₊ is 0.4 for NaCl solution and activity coefficient is 0.6 and 1 for 0.01 and 0.001M NaCl solution respectively.			
iv)	Calculate what emf of this cell would be if there were no liquid junction potential.	1 (2mks)		
v)	Determine the value of the liquid junction potential	(1mk)		