KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS **2010/2011 ACADEMIC YEAR** FOR THE DEGREE OF BACHELOR OF EDUCATION **SCIENCE COURSE CODE: PHYS 323 ELECTROMAGNETIC THEORY COURSE TITLE: SESSION V & VII STREAM: WEDNESDAY** DAY: 9.00 – 11.00 A.M. TIME: **DATE:** 13/04/2011

INSTRUCTIONS:

Answer question **ONE** and any **TWO** other questions. Question **ONE** carries **40** marks while all the other questions carry **15** marks each.

You may use the following constants:

 $\begin{aligned} \epsilon_{o} &= 8.85 \text{ x } 10^{-12} \text{ F/m}; \ \mu_{o} &= 4\pi \text{x} 10^{-7} \text{Tm/A}; \ \textbf{c} &= \textbf{3.0 x } 10^{8} \text{ m/s}; \ \textbf{Z}_{o} &= 377 \Omega \\ \text{Electron charge} &= 1.6 \text{ x } 10^{-19} \text{C}; \ \text{Rest mass of an electron} & M_{e} &= 9.1 \text{ x } 10^{-31} \text{kg} \\ \text{Rest mass of a proton} & Mp &= 1.672 \text{ x } 10^{-27} \text{kg} ; \ \text{Resistivity of copper} \ \rho &= 1.7 \text{ x } 10^{-8} \end{aligned}$

PLEASE TURN OVER

OUESTION ONE

		State Lenz's law		
b)	A currei)	ent of 5.00mA flows into a 10.0pF capacitor with circular plates of radius 2.00cm. Find The displacement current,	1 [1 mark]	
	ii)	the rate of change of the electric flux,	[2 marks]	
	iii)	the rate of change of electric field,	[3 marks]	
	iv)	the magnetic field 3.00cm from the center of the plates	[2 marks]	
	v)	The magnetic field 1.00cm from the center of the plates.	[2marks]	
c)	State a	ny FOUR properties of electromagnetic waves	[2 mark]	
d)	Define	'pointing vector'	[1 mark]	
		ectric field E_y of a TransverseElectroMagnetic (TEM) wave equals 100Vm ⁻¹ rms. Find: velocity and pointing vector magnitude $ PV $ in air	[2 marks]	
i	i) y	velocity and $ PV $ in a lossless dielectric medium with $\varepsilon_r = 9$	[2 marks]	
f)	Sunlight strikes earth with an average intensity of 1400W/m ² . Find the peak electric and magnetic fields			
g)	Descri	be briefly what you understand by eddy current. How can it be reduced?	[4 marks] [3 marks]	
h)	In some region of space the electric field and the magnetic field give equal contributions to the density. Find the ratio of E to B.		ne energy [2 marks]	
i)		ctron in the ground state of the hydrogen atom has an orbital angular momentum of 10^{-34} J·s. Find the orbital magnetic moment.	[2 marks]	

j) A conducting rod of length l is free to slide on two parallel conducting bars as in Figure 1 below

In addition, two resistors R1 and R2 are connected across the ends of the bars. There is a uniform magnetic field pointing into the page. Suppose an external agent pulls the bar to the left at a constant speed. Evaluate the following quantities:

i)	The currents through both resistors;	[3 marks]
ii)	The total power delivered to the resistors;	[2 marks]

iii) The applied force needed for the rod to maintain a constant velocity [2 marks]

k) Study the figure below

Figure 3

From i)	the figure, find: Voltage standing wave ratio(VSWR)	[2 marks]
ii)	Reflection coefficient ρ for the wave of the figure	[2 marks]

QUESTION TWO

a)	State and briefly explain THREE types of magnetic behaviour	[6 marks]
----	---	-----------

b) A circular loop of wire of radius a is placed in a uniform magnetic field, with the plane of the loop perpendicular to the direction of the field, as shown in Figure below. The magnetic field varies with time according to $B = B_0$ + bt where B_0 and b are positive constants.

i) Calculate the magnetic flux through the loop at
$$t = 0$$
 [3 marks]
 $B=B_0+bt$

ux uno	ugh the loop at $t = 0$	
ii)	Calculate the induced e.m.f in the loop.	[2 marks]
iii)	What is the induced current and its direction of flow overall resistance of the loop is R?	v if the [2 marks]
iv)	Find the power dissipated due to the resistance of the	ne loop [2 marks]

QUESTION THREE

- a) Show that $E = E_m \sin(kz \omega t)$ is a wave moving in the positive z direction. Express k and w in terms of the wavelength, λ , and the frequency, f and find their relationship to the velocity. [5 marks]
- b) Calculate the ocean depths at which a 1 μ Vm⁻¹ field will be obtained with E at the surface equal to 1 Vm⁻¹ at frequencies of 1, 10, 100, and 1000 kHz. What is the most suitable frequency for communication by wireless with undersea craft? (assume at the sea, $\sigma = 4 \ \Omega m^{-1}$, and $\epsilon_r = 80$)

[5 marks]

a) Suppose a magnetic monopole is found experimentally. Fix Maxwell's Equations and find the SI units of magnetic charge [5 marks]

QUESTION FOUR

A solenoid (shown in figure 4) has 1000 turns of wire. It is 10.0cm long and 1.00cm in diameter. a) Estimate the self inductance. [5 marks]

- b) The inductor in a) above is made of copper. Find:
 - i) Its resistance, [5 marks] [2 marks]
 - ii) The equilibrium current when it is connected to a 1.50V battery iii)
 - The time required for it to reach 99% of this equilibrium current. [3 marks]