UNIVERSITY EXAMINATIONS
2010/2011 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: PHYS 323
COURSE TITLE: ELECTROMAGNETIC THEORY
STREAM:
SESSION V \& VII
DAY:
WEDNESDAY
TIME:
9.00 - 11.00 A.M.
DATE:
13/04/2011

INSTRUCTIONS:

Answer question ONE and any TWO other questions.
Question ONE carries 40 marks while all the other questions carry $\mathbf{1 5}$ marks each.
You may use the following constants:
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} ; \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A} ; \mathbf{c}=3.0 \times 10^{8} \mathbf{~ m} / \mathbf{s} ; \mathrm{Z}_{\mathrm{o}}=377 \Omega$
Electron charge

$$
\begin{aligned}
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \text {; Rest mass of an electron } \mathrm{M}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{Mp}=1.672 \times 10^{-27} \mathrm{~kg} \text {; Resistivity of copper } \rho=1.7 \times 10^{-8}
\end{aligned}
$$

QUESTION ONE

a) State Lenz's law
[1 mark]
b) A current of 5.00 mA flows into a 10.0 pF capacitor with circular plates of radius 2.00 cm . Find
i) The displacement current, [1 mark]
ii) the rate of change of the electric flux,
iii) the rate of change of electric field, [3 marks]
iv) the magnetic field 3.00 cm from the center of the plates
v) The magnetic field 1.00 cm from the center of the plates.
c) State any FOUR properties of electromagnetic waves
d) Define 'pointing vector'
e) The electric field E_{y} of a TransverseElectroMagnetic (TEM) wave equals $100 \mathrm{Vm}^{-1} \mathrm{rms}$. Find:
i) velocity and pointing vector magnitude $|P V|$ in air
ii) velocity and $|P V|$ in a lossless dielectric medium with $\varepsilon_{\mathrm{r}}=9$
f) Sunlight strikes earth with an average intensity of $1400 \mathrm{~W} / \mathrm{m}^{2}$. Find the peak electric and magnetic fields.
g) Describe briefly what you understand by eddy current. How can it be reduced?
h) In some region of space the electric field and the magnetic field give equal contributions to the energy density. Find the ratio of E to B.
[2 marks]
i) An electron in the ground state of the hydrogen atom has an orbital angular momentum of $1.05 \times 10^{-34} \mathrm{~J}$.s. Find the orbital magnetic moment.
j) A conducting rod of length 1 is free to slide on two parallel conducting bars as in Figure 1 below

Figure 1
In addition, two resistors R_{1} and R_{2} are connected across the ends of the bars. There is a uniform magnetic field pointing into the page. Suppose an external agent pulls the bar to the left at a constant speed. Evaluate the following quantities:
i) The currents through both resistors;
ii) The total power delivered to the resistors;
iii) The applied force needed for the rod to maintain a constant velocity
k) Study the figure below

Figure 3
From the figure, find:
i) Voltage standing wave ratio(VSWR)
ii) Reflection coefficient ρ for the wave of the figure

QUESTION TWO

a) State and briefly explain THREE types of magnetic behaviour
[6 marks]
b) A circular loop of wire of radius a is placed in a uniform magnetic field, with the plane of the loop perpendicular to the direction of the field, as shown in Figure below.The magnetic field varies with time according to $B=B_{0}+$ bt where B_{0} and b are positive constants.
i) Calculate the magnetic flux through the loop at $t=0$

ii) Calculate the induced e.m.f in the loop.
[2 marks]
iii) What is the induced current and its direction of flow if the overall resistance of the loop is R ?
[2 marks]
iv) Find the power dissipated due to the resistance of the loop
[2 marks]

QUESTION THREE

a) Show that $\mathrm{E}=\mathrm{E}_{\mathrm{m}} \sin (\mathrm{kz}-\omega \mathrm{t})$ is a wave moving in the positive z direction. Express k and w in terms of the wavelength, λ, and the frequency, f and find their relationship to the velocity.
b) Calculate the ocean depths at which a $1 \mu \mathrm{Vm}^{-1}$ field will be obtained with E at the surface equal to 1 Vm^{-1} at frequencies of $1,10,100$, and 1000 kHz . What is the most suitable frequency for communication by wireless with undersea craft? (assume at the sea, $\sigma=4 \Omega \mathrm{~m}^{-1}$, and $\varepsilon_{\mathrm{r}}=80$)
[5 marks]
a) Suppose a magnetic monopole is found experimentally. Fix Maxwell's Equations and find the SI units of magnetic charge

QUESTION FOUR

a) A solenoid (shown in figure 4) has 1000 turns of wire. It is 10.0 cm long and 1.00 cm in diameter. Estimate the self inductance.

B \qquad W以
Figure 4
b) The inductor in a) above is made of copper. Find:
i) Its resistance,
[5 marks]
ii) The equilibrium current when it is connected to a 1.50 V battery
[2 marks]
iii) The time required for it to reach 99% of this equilibrium current.
[3 marks]

