KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATIONS

COURSE CODE: MATH 216
COURSE TITLE: ENGINEERING MATHEMATICS
STREAM:
DAY:
THURSDAY
TIME:
9.00-12.00 P.M.

DATE:
16/12/2010

INSTRUCTIONS:

$>$ Answer Question ONE and any other THREE Questions.

PLEASE TURN OVER

QUESTION ONE (20 MARKS)

a) A particle moves along a curve whose parametric equations are $x=e^{-t}, y=2 \cos 3 t$ and $z=2 \sin 3 t$, where t is time.
a). Determine its velocity and acceleration at any time.
(3 marks)
b). Find the magnitude of the velocity and acceleration at $t=0$.
(2 marks)
b) Use Runge-Kutta method to obtain an approximation of $y(1.2)$ for the solution of the function $y^{\prime}=2 x y$ with the initial condition $y(1)=1$ using a step size of $h=0.1$.
(6 marks)
c) Given that $\tilde{A}=\left(2 x^{2} y-x^{4}\right) \hat{i}+\left(e^{x y}-y \sin x\right) \hat{j}+\left(x^{2} \cos y\right) \hat{k}$. Find $\frac{\partial^{2} \tilde{A}}{\partial x \partial y}+2 \frac{\partial^{2} \tilde{A}}{\partial x^{2}}-\frac{\partial^{2} \tilde{A}}{\partial y^{2}}$.
(4 marks)
d) Find the solution of the following initial value problem of the second order equation

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1 \tag{5marks}
\end{equation*}
$$

QUESTION TWO (10 MARKS)

a) Use Euler method to obtain the approximate value of $y(0.2)$ for the solution of $y^{\prime}=(x+y-1)^{2}$ with the condition $y(0)=2$ and for a step function of $h=0.1$
b) Consider the following network.

i). Use Kirchoff's law to determine the equations for the unknown currents I_{1}, I_{2} and I_{3}.
(3 marks)
ii). Using Cramer's rule, express I_{1}, I_{2} and I_{3} in terms of $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5}.
(4 marks)

QUESTION THREE (10 MARKS)

a) Solve the initial value problem $\left(1+y^{2}\right) d x+\left(1+y^{2}\right) d y=0$ using the initial conditions $y(0)=-1$.
b) Find the integrating factor of the following differential equation and solve it.

$$
\begin{equation*}
2 x^{2} y d x+\left(x^{3}+2 x y\right) d y=0 \tag{3marks}
\end{equation*}
$$

c) Consider the following differential equation that models the harmonic oscillator $m \ddot{y}+c \dot{y}+k y=0$, where c is the coefficient of damping, k is spring constant and m is the mass of the object attached to the spring. Show that the general solution of the system in case of under-damping is given by $y(t)=e^{-\alpha t}(A \cos \omega t+B \sin \omega t)$ where A and B are arbitrary constants of integration and $\alpha=\frac{c}{2 m}$ and $\omega=\frac{1}{2 m} \sqrt{4 m k-c^{2}}$

QUESTION FOUR (10 MARKS)

a) Find the solution of the wave equation by separation of variables $\alpha \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}$, $0<x<L, t>0$ with the conditions

$$
\begin{array}{lll}
u(0, t)=0, & u(L, t)=0, & t \geq 0 \text { and } \\
u(x, 0)=f(x), & \left.\frac{\partial u}{\partial t}\right|_{t=0}=g(x), & 0<x<L \tag{6marks}
\end{array}
$$

b) Expand $f(x)=x^{2}$ using Half-Range Fourier cosine Series.

QUESTION FIVE (10 MARKS)

a) A particle moves along the curve $\tilde{r}=\left(t^{3}-4 t\right) \hat{i}+\left(t^{2}+4 t\right) \hat{j}+\left(8 t^{2}-3 t^{3}\right) \hat{k}$ where t is time. Find the magnitude of the tangential and normal components of its acceleration when $t=2$.
c) Evaluate $\iint_{S} \hat{F} . \hat{n} d S$ where $\hat{F}=z \hat{i}+x \hat{j}+y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=4$ in the first octant between $z=0$ and $z=4$.

