KABARAK



UNIVERSITY

## **UNIVERSITY EXAMINATIONS**

## 2010/2011 ACADEMIC YEAR

# FOR THE DEGREE OF BACHELOR OF TELECOMMUNICATION

# COURSE CODE: MATH 216

# **COURSE TITLE: ENGINEERING MATHEMATICS**

- STREAM: Y2S1
- DAY: THURSDAY
- TIME: 9.00 12.00 P.M.
- DATE: 24/03/2011

### **INSTRUCTIONS:**

- 1. Question ONE is compulsory.
- 2. Attempt question ONE and any other THREE

### PLEASE TURN OVER

### **QUESTION ONE-COMPULSORY (40 marks)**

- a) Find the unit tangent vector to any point on the curve  $x = t^2 + 1$ , y = 4t 3 and  $z = 2t^2 6t$  hence find the unit tangent at the point where t = 2 (3 marks)
- b) Determine the constant *a* so that the vector  $\vec{V} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$  is a solenoid

(2 Marks)

(6 marks)

- c) Evaluate the iterated volume integral  $\int_{0}^{1} \int_{0}^{2x} \int_{x-y}^{x+y} 30xyzdzdydx$  (4 marks)
- d) Verify green's theorem in the plane for  $\oint_C (xy + y^2) dx + x^2 dy$  where C is the closed curve bounded by y = x and  $y = x^2$  (2 marks)
- e) Determine the particular solution of  $(y^2 1)\frac{dy}{dx} = 3y$  given that y = 1 when  $x = 2\frac{1}{6}$
- f) Determine the solution of the following non-homogeneous equation by the method of variation of parameters  $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{1}{1 + e^{-x}}$  (6 marks)
- g) Determine  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$  when  $z = \frac{1}{\sqrt{(x^2 + y^2)}}$  (2 marks)

h) Verify that 
$$u(\theta, t) = \theta^2 + \theta t$$
 is a solution of  $\frac{\partial u}{\partial \theta} - 2\frac{\partial u}{\partial t} = t$  (4 marks)

i) Find two linear independent solutions to the system;

$$\mathbf{x}^{1} = \mathbf{A}\mathbf{x} \text{ for } \mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$$
 (6 marks)

j) Determine the Half-Range Fourier cosine Series to represent f(x) = 3x in the range  $0 \le x \le \pi$  (5 marks)

#### **QUESTION TWO: 20 MARKS**

a) A particle moves along a curve whose parametric equations are  $x = e^{-t}$ ,  $y = 2\cos 3t$  and  $z = 2\sin 3t$  where t is the time. Determine the velocity and acceleration at any given time and hence find the magnitude of the velocity and acceleration at t = 0 (3 marks)

b) A space curve is given by the equations x = t,  $y = t^2$ ,  $z = \frac{2}{3}t^3$  find (6 marks)

- i) the curvature  $\kappa$
- ii) The torsion  $\tau$ .

c) If 
$$A = (3x^2 + +6y)\hat{i} - 14y\hat{j} + 20xz^2\hat{k}$$
 evaluate the line integral  $\int_C \vec{A} \cdot dr$  from (0,0,0) to (1,1,1) along  
the following path,  $x = t$ ,  $y = t^2$   $z = t^3$  (3 Marks)

d) Given that 
$$\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$$

 $\rightarrow$ 

| i)  | Show that $F$ is a conservative force field. | (1mark)  |
|-----|----------------------------------------------|----------|
| ii) | Find the scalar potential                    | (2marks) |

iii) Find the work done in moving an object in this field from (1,-2,1) to (3,1,4)

(1 mark)

e) Use divergence theorem to evaluate  $\oint_{S} \ddot{r} \cdot \hat{n} ds$  where  $\ddot{r} = 2x\hat{i} + zy\hat{j} + x\hat{k}$  and S is the surface of tetrahedron bounded by the plane x = 0 z = 0 x + y + z = 1 (4 marks)

#### **QUESTION THREE: 20 MARKS**

- a) The variation of resistance *R* ohms, of an aluminium conductor with temperature  $\theta^0 C$  is given by  $\frac{dR}{d\theta} = \alpha R$  where  $\alpha$  is the temperature coefficient of resistance of aluminium.
  - i) Given that  $R = R_0$  when  $\theta = 0^0 C$  find the particular solution (4 marks)
  - ii) Determine the resistance of an aluminium conductor at  $50^{\circ}C$  given that its resistance at  $0^{\circ}C$  is  $24 \cdot 0\Omega$  take  $\alpha = 38 \times 10^{-4} / {^{\circ}C}$  (2 marks)
- b) The equation  $\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$  represents a current *i* flowing in an electrical circuit containing resistance *R* inductance *L* and capacitance *C* connected in series. Given that R = 200 ohms,  $L = 0 \cdot 20$  henry and  $C = 20 \times 10^{-6}$  farads solve the equation for *i* given the boundary conditions that when t = 0, i = 0 and  $\frac{di}{dt} = 100$ . (4 marks)
- c) An equation used in thermodynamics is the benedict-Webb-Rubine equation of state for the expansion of gas. The equation is

1

$$p = \frac{RT}{V} + \left(B_0RT - A_0 - \frac{C_0}{T^2}\right) \frac{1}{V^2} + \left(bRT - a\right) \frac{1}{V^3} + \frac{A\alpha}{V^6} + \frac{C\left(1 + \frac{\gamma}{V^2}\right)}{T^2} \left(\frac{1}{V^3}\right) e^{-\frac{\gamma}{V^2}}$$

d) A square plate is bounded by the lines x = 0 y = 0 x = 1 and y = 1. Apply the Laplace equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$  to determine the potential distribution u(x, y) over the plate subject to the following boundary conditions. (5 marks) u = 0 when x = 0  $0 \le y \le 1$ 

 $0 \le y \le 1$ 

 $0 \le x \le 1$ 

| u = 4 when $y = 1$ | $0 \le x \le 1$ |
|--------------------|-----------------|
|                    |                 |

### **QUESTION FOUR: 20 MARKS**

u = 0 when x = 1u = 0 when y = 0

a) Solve the system

2x-3y+z=1x-6y+3z=-43x+3y-2z=7

b) The following information system of equations governs the vertical vibrations of two coupled springs with masses  $m_1$  and  $m_2$  suspended on them.

$$m_1 y' = -k_1 y_1 + k_2 (y_2 + y_1)$$
$$m_2 y' = -k_2 (y_2 + y_1)$$

Where  $k_1$  and  $k_2$  are spring constants and  $y_1$ ,  $y_2$  are the displacements due to extension by the spring and y' denote differentiation with respect to time.

- i) Write the system in the form y' = Ay where A is the coefficient matrix
- ii) Let  $m_1 = m_2 = 1$ ,  $k_1 = 3$ , and  $k_2 = 2$ , find the eigenvalues and the corresponding eigenvectors of the system in (i) above. (6 marks)
- iii) Obtain the solution of the system in (ii). above using the initial conditions  $y_1(0) = 1, y_2(0) = 2, \ \ y_1(0) = -2\sqrt{6}, \ \ y_2(0) = \sqrt{6}$ . (4 marks)

(7 marks)

(3 marks)

### **QUESTION FIVE: 20 MARKS**

- a) Deduce the Fourier series for the function  $f(\theta) = \theta^2$  in the range 0 to  $2\pi$  (6 marks)
- b) The voltage from a square wave generator is of the form:

$$v(t) = \begin{cases} 0, \dots, -4 < t < 0\\ 10, \dots, 0 < t < 4 \end{cases}$$

Find the Fourier series for this periodic function.

c) Given the differential equation 
$$\frac{dy}{dx} = y - x$$

i) Obtain a numerical solution using Euler's method with the initial conditions x = 0y = 2 for the range  $x = 0(0 \cdot 1)0 \cdot 5$  (4 marks)

(5 marks)

- ii) Draw the graph of the solution (2 marks)
  iii) Using integrating factor method find the solution of the differential equation
- (2 marks)
- iv) Determine the percentage error at x = 0.3 (1 mark)